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Abstract. The current challenge facing factories in Thailand is the transition to 

Industry 4.0. The process of appearance inspection has been transformed from 

human inspection to a computer-assisted tool. The objective of this process is to 

improve the accuracy of the inspection by removing human judgment. In this 

study, we propose a convolution neural network (CNN) to detect the defect of 

electronic enclosure. Then, we compare the proposed method with several other 

techniques, including SVM and KNN. The testing dataset comprises 1,190 im-

ages captured from a camera oriented in a consistent direction. These images 

were divided into four balanced classes to mitigate any issues related to class 

imbalance during model training. Although SVM demonstrated superior accu-

racy, the substantial time required for training makes it impractical for real-

world applications where time efficiency is crucial. In contrast, despite having 

slightly lower accuracy, CNN showed a beneficial balance between perfor-

mance and computational efficiency, making it a more pragmatic choice in 

many real-world scenarios. KNN, although faster than SVM, had the lowest 

performance in our tests. 

Keywords: Defect Detection · Convolution Neural Network · Image Pro-

cessing. 

1 Introduction 

Many industries in Thailand are adapting to Industry 4.0. Motor vehicle production 

grew more than 280% from 2000 – 2007, and we can see that passenger cars were 

assembled and in very high demand (22). One of the enabling keys is the adoption of 

new technology. One area where Industry 4.0 has made significant progress is in the 

field of image classification. By training machine learning models to classify images, 

industries can automate tasks such as object recognition (20) and defect detection(1), 

instead of relying on human inspection and decision-making. This saves time and 

resources and improves the accuracy and reliability of these tasks. 

There is a problem that we have identified in the product inspection process. When 

people conduct inspections using a microscope, mistakes are often made, such as not 

covering all of the inspection criteria, being unable to identify problems, and forget-

ting about defective criteria that were previously accepted. 
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These mistakes lead to lost time, delays in the next production process, and a Pro-

liferation of reducible activities in the company.  

In this article, we will explore the concept of image classification using machine 

learning. We will also delve into the different techniques and approaches that can be 

used for image classification, including deep learning methods like convolutional 

neural networks (CNNs) and more traditional approaches like K-nearest neighbors 

and support vector machines. 

The organization of this article is as follows. The next section is the literature re-

view on the methodology. Section 3 provides the details on the proposed method and 

section 4 explains the experiments and their results. Finally, the conclusion and the 

future work are discussed in the last section. 

2 Literature Review 

This section aims to provide the foundation knowledge on the related research. Sec-

tion sec:cnn provides the theoretical point of view on the convolution neural networks 

(CNN) and Section 2.2 discusses the existing research on manufacturing defect detec-

tion using image processing techniques. 

 

2.1 Convolution Neural Networks 

The foundational concept of CNNs was inspired by the notion of self-organization in 

a multi-layer perceptron. The earliest model embodying this idea was the Neocogni-

tron, introduced by Fukushima in 1980 (5). However, despite setting a conceptual 

precedent, the Neocognitron was somewhat limited in its practical usability due to the 

lack of learning algorithms. Addressing this limitation in 1998 (11), developed LeNet-

5, a 7-level convolutional network. LeNet-5 was a significant advancement in the 

field, particularly successful in handwriting and character recognition tasks. Based on 

LeNet-5, the architecture of a CNN is composed of several components. The convolu-

tional layer is used for local receptive field learning. The pooling layer serves the 

purpose of down-sampling and providing translation invariance. The fully connected 

layer integrates the learned features for the ultimate classification task. Subsequently, 

the learned representations are flattened and passed through a SoftMax function to 

carry out the final classification (13). 

The model was enhanced by adding more layers and incorporating the 

ReLU(Rectified Linear Unit) as an activation function, as demonstrated in AlexNet. 

This change was crucial in addressing the vanishing gradient problem that often hin-

ders the training of deep neural networks (10). 

The VGG networks (18) introduced increased depth to the architecture, incorporat-

ing up to 19 layers, which found extensive use in the field of computer vision. Fur-

thermore, models such as GoogLeNet or Inception and ResNet incorporated the prin-

ciples of CNN into their base architectures. These advances strengthened and im-

proved the accuracy of the models, establishing them as foundational architectures for 

computer vision tasks. The general structure of CNN is as follows. 
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– Input Layer. This layer receives the image and considers its dimensions, such as 

width, height, and depth.  

– Convolutional Layer. This layer is responsible for extracting features from the 

given image. The output for each element in the feature map is calculated as. 

 Output(𝑖, 𝑗) = ∑ ∑ Input(𝑖 + 𝑚, 𝑗 + 𝑛)𝑛𝑚 × Kernel(𝑚, 𝑛)   

– Pooling Layer. This layer’s primary role is to diminish the spatial dimensions, 

specifically, the width and height, as shown in the following equation. 

 Result(𝑖, 𝑗) = 𝑚𝑎𝑥 Input (𝑖 + 𝑚, 𝑗 + 𝑛)  

– Output Layer. In the case of classification tasks, this layer often reduces the input 

dimensions to match the number of target classes. 

 

Subsequently, the application of CNNs extended beyond image recognition. 

They have been adopted across various domains, including natural language pro-

cessing (9), medical image analysis (12), and even astronomy for tasks like 

star-galaxy separation (3). 

 

2.2 Related Researches 

Defect detection in industrial products is a critical task aimed at ensuring quality con-

trol in manufacturing processes. It involves the identification of anomalies, irregulari-

ties, or deviations from the standard specifications in products. The evolution of this 

field has been marked by the transition from manual inspection to automated systems, 

leveraging advanced machine learning algorithms to enhance accuracy, efficiency, 

and speed. Thus, the integration of machine learning techniques in defect detection 

for industrial products has revolutionized quality control processes. 

According to Table 1, the reviewed literature can be broadly categorized into two 

groups based on the machine learning techniques employed: traditional machine 

learning algorithms and deep learning methods. Traditional algorithms like KNN and 

SVM have laid the groundwork, offering robust classification based on feature simi-

larity and high-dimensional data handling. However, the advent of deep learning, 

especially CNNs, has markedly improved the field, enabling more accurate and effi-

cient defect detection. The use of attention mechanisms in CNNs further underscores 

the ongoing innovation in this domain, highlighting the potential for even more so-

phisticated and effective defect detection methods in the future. It becomes clear that 

CNNs gain a lot of attention in the area of defect detection across diverse manufactur-

ing sectors. It becomes evident that CNNs stand out as a highly appropriate choice for 

defect detection in the context of electronics enclosure manufacturing. Drawing upon 

the recent 
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Table 1. Recent Research on Defect Detection in Manufacturing 

Year Author Subject of Study ML Technique Result Performance 

2023 
Saberironaghi, Ren, & 

El-Gindy (2023)(15) 

Defect Detection in Manufacturing 

Processes 

CNN Improved accuracy in defect 

detection. 

2020 
Saqlain, Abbas, & Lee 

(2020) (16) 
Semiconductor Manufacturing 

CNN Enhanced defect detection in 

semiconductor images. 

2021 Jiang et al. (2021). (8) Industrial X-ray Images 
CNN Efficient defect detection in X-ray 

images. 

2021 
Ortega Sanz et al. (2021). 

(14) 
Automotive Manufacturing 

CNN Successful detection of defects in 

automotive manufacturing. 

2022 
Shaikh, Hujare, & Yadav 

(2022) (17) 
Manufacturing Surfaces 

CNN Automation of defect detection in 

manufacturing surfaces. 

2020 Wen et al. (2020) (24) Semiconductor Images 
CNN Novel CNN-based approach for 

semiconductor defect detection. 

2022 Djavadifar et al. (2022) (4) Manufacturing Processes 
CNN CNN application for defect detec-

tion in manufacturing processes. 

2019 Wang & Zhu (2019) (23) 
Turbine Blade and Transmission 

Case 

CNN Improved defect detection 

using SVM and deep learning. 

2012 Jazi, Liu, & Lee (2012) (7) Glass Substrates 
CNN SVM optimized with simulated 

annealing (SA). 

2016 
Yıldız, Buldu & Demetgul 

(2016)(25) 
Texile Fabrics 

CNN KNN-based defect classification. 

 

and reputable academic resources we have referenced, we can discern compelling 

reasons for this selection. As a consequence, we propose their application as the core 

methodology in our research for defect detection in electronics enclosure manufactur-

ing. This choice is informed not only by their demonstrated accuracy but also by their 

adaptability to various manufacturing environments, making CNNs a compelling 

choice for achieving superior results in defect detection tasks. 

3 Defect Detection for Electronics Enclosure Using 

This section is dedicated to the explanation of the proposed method. The working 

strategy of this work is straightforward. Two main stages include the data preparation 

and the modeling process. The overall concept of this work is illustrated in Figure 1. 

 

 

Fig. 1. Overall architecture. 

The data preparation phase begins with resizing the images to a uniform resolution. 

We have standardized the input resolution at 150 x 150 pixels to speed up the CNN's 

training process. Our experimental design has shown that this resolution offers an 

CNN Training Data Preparation 
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ideal balance between processing speed and validation accuracy; although smaller 

sizes could increase speed, they did not significantly improve accuracy. As a result, 

150 x 150 pixels has been set as our default resolution. Additionally, we use an RGB 

color scheme which is essential for detecting specific color-dependent defects in our 

connectors. Images are then classified into one of four predefined categories, accord-

ing to general specifications defined by the engineering team. We can detail the de-

fects as follows. 

 

– Good. This class refers to a product that has been assembled completely without 

any errors. 

– Burr. This class indicates the presence of additional material on the product, typ-

ically resulting from the injection molding process. 

– Damage. This class refers to product areas that do not conform to the specified 

shape or might be missing some components. 

– Metallic. This class implies foreign matter, possibly metal debris or particles is 

attached to the connector. 

 

Then, the data was normalized to standardize these variations by scaling the pixel 

values to a range of 0 to 1. This was achieved by dividing each pixel value by the 

maximum possible value, which is 255 for RGB images. Thereby ensuring a con-

sistent level across the dataset, this scaling process enhances the overall effectiveness 

of the model by facilitating faster convergence during training and reducing the like-

lihood of certain features overwhelming others due to their scale. Such normalization 

is crucial for deep learning models that rely heavily on the magnitude and range of the 

input data. 

4 Defect Detection for Electronics Enclosure Using 

The objective of this section is to demonstrate the performance of the proposed meth-

od. Section 4.1 discusses how the experiment is set up from the data collection to the 

performance evaluation. Section 4.2 displays the results of the studies, and Section 

4.3 discusses the results. 

 

4.1 Related Researches 

The dataset utilized for this study was obtained using a digital microscope with a 

capacity of 5 million pixels. The microscope was utilized to capture images at a mag-

nification range of 10 to 300 times, accurately recording features of the subject to its 

original size of 1280 x 1024 pixels. The captured images, maintaining a resolution of 

60 dpi and a 24-bit depth, offer detailed visual information, enhancing the quality of 

the dataset. We collected extensive data comprising more than 1,000 images. The 

number of images for each class is shown in Table 2. These images illustrate both the 

defective and intact aspects of an actual connector in relation to the predefined class 

in Section 3. The categorization facilitates an efficient and systematic evaluation, 
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assisting in achieving accurate and meaningful results from the study as per Figure 2 

for sample. 

 

Table 2. Number of images for each class. 

Class Number of images 
Good 300 

Burr 290 

Damage 280 

Metallic 320 

Total 1,190 

 

Fig. 2. Example of raw images from each classes. 

The performance evaluation of the proposed method includes precision, recall, F1-

Score, and accuracy. 
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– Precision. Precision is the ratio of correctly predicted positive observations to 

the total predicted positive observations. It is defined as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

High precision indicates a low rate of false positives (19). 

– Recall. Recall, also known as sensitivity, is the ratio of correctly predicted posi-

tive observations to all observations in the actual class. It is defined as: 

 

Recall =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

High recall indicates a low rate of false negatives (2). 

– F1-Score. The F1-Score is the weighted average of Precision and Recall. There-

fore, this score takes both false positives and false negatives into account. It is defined 

as: 

F1 − Score =  2 ×
Precision ×  Recall

Precision +  Recall
 

 

The F1-Score is especially useful when seeking a balance between Precision and 

Recall (21). 

– Accuracy. Accuracy is the ratio of correctly predicted observations to the total 

observations. It is defined as: 

 

Accuracy =  
True Positives +  True Negatives

Total Observations
 

 

Accuracy is a useful measure when the target classes are well balanced (6). 

 

Moreover, we also studied the training time of the model. Two well-known methods 

challenge the proposed method: K-nearest neighbors (KNN) and Support Vector Ma-

chine (SVM). All procedures were executed using Python in a Jupyter Notebook 

within the Anaconda environment. The computations were conducted on a machine 

equipped with a Ryzen 7 5800 CPU running at 3.8 GHz, 16 GB DDR4 RAM, and an 

Nvidia RTX 3050 4GB GPU. The CNN model was constructed using the Keras li-

brary, while the scikit-learn (SKlearn) library was utilized for the development of the 

SVM and KNN models. Our dataset comprised 1,190 images, split into four balanced 

classes to avoid class imbalance problems during training. We used 80% of the imag-

es for training and the remaining 20% for validation. For the CNN model, we adopted 

a conventional structure, which was refined through a systematic evaluation of per-

formance metrics against various configurations, ultimately leading us to the model 

outlined in Figure 3. 
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4.2 Experimental Results 

The experimental results presented in Table 3 demonstrate the performance of various 

machine learning models in defect detection for electronics enclosures. The proposed 

CNN, SVM, and KNN were evaluated based on precision, recall, F1-score, and accu-

racy metrics. The CNN model shows a higher degree of effectiveness with a balanced 

performance across all metrics, achieving an accuracy of 89.5%. It indicates a high 

level of reliability in both positive defect detection and the ability to classify non-

defective cases correctly. The SVM outperforms the other models, with an impressive 

accuracy of 98.3%. This high performance suggests that the SVM is particularly well-

suited for the high-dimensional space typical of image data in electronic enclosures. 

Its precision and recall are equal at 98.0%, indicating an excellent balance between 

sensitivity and specificity. The KNN model demonstrates a lower performance com-

pared to the other models, with an accuracy of 85.0%. This may suggest that the KNN 

algorithm while being a simpler and more interpretable model, is less capable of han-

dling the complexity of the defect detection task in the given context. 

Table 3. Comparison of the precision, recall, F1-score, and accuracy of CNN, SVM and KNN. 

Model  Precision Recall F1-Score Accuracy 

CNN 90.0% 89.0% 89.0% 89.5% 

SVM 98.0% 98.0% 98.0% 98.3% 

KNN 86.0% 85.0% 85.0% 85.0% 

 

The training time for each machine learning model is a critical aspect of resource 

consumption in the defect detection task for electronics enclosures. Table 4 compares 

the training times required by the proposed CNN, SVM, and KNN. The CNN model 

required 108.58 seconds for training, which indicates a high efficiency in terms of 

computational time. This efficiency makes the CNN model a practical choice for sce-

narios where quick model deployment is necessary. On the other hand, the SVM 

model took significantly longer, with a training time of over 10 hours. This substantial 

increase in training duration may be attributed to the SVM’s computational complexi-

ty, especially when dealing with large feature spaces commonly present in image 

data. Lastly, the KNN model’s training time was recorded at 189.277 seconds. While 

not as efficient as the CNN, the KNN training time remains reasonable. However, it is 

important to note that the KNN algorithm typically has a faster training phase but can 

be slower during the prediction phase due to its lazy learning nature. 

As seen in Figure 4, the training loss decreases sharply within the initial epochs, 

indicating a rapid learning phase where the model quickly assimilates the patterns 

within the training data. The subsequent gradual decline suggests that the model con-

tinues to learn and improve, albeit at a slower rate, as it begins to converge toward an 

optimal set of weights. The validation loss, representing the 
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Table 4. Training time for each model 

Model  Training time 

CNN 108.58 Sec 

SVM > 10 Hours 

KNN 189.277 Sec 

 

model’s performance on unseen data, mirrors the training loss closely. This close 

correspondence suggests that the model is generalizing well and not overfitting to the 

training data. The validation loss reaches a plateau early, which is an indication that 

additional training beyond this point does not yield significant improvements in mod-

el performance on the validation set. As shown in Figure 5, the training accuracy 

curve shows a steep ascent within the initial few epochs, reaching a high level of ac-

curacy swiftly. This rapid increase suggests that the CNN model is capable of learn-

ing the distinctive features of the dataset effectively. After the sharp rise, the training 

accuracy plateaus, indicating that the model has nearly optimized its parameters for 

the training dataset. Conversely, the validation accuracy increases alongside the train-

ing accuracy, which is indicative of the model’s ability to generalize to new, unseen 

data. The small gap between the training and validation accuracy implies that the 

model is not overfitting and has good predictive performance. 

 

4.3 Experimental Results 

The experimental results yield insightful implications for applying machine learning 

models in defect detection for electronic enclosures. The CNN, while slightly less 

accurate than the SVM, presents a compelling balance between computational effi-

ciency and performance. Its quick training time aligns with industrial needs for rapid 

deployment. The SVM, despite its high accuracy, is less favorable due to the imprac-

tical training duration. The KNN, with lower performance metrics, reinforces the 

necessity of complex models to handle the intricacies of defect detection tasks. The 

consistency between training and validation loss and accuracy for the CNN under-

scores its robustness and potential for real-world applications, showcasing the mod-

el’s ability to generalize beyond the training data without significant overfitting. 

5 Conclusion 

This work presented a Convolution Neural Network (CNN) model for defect detec-

tion in electronics enclosures, demonstrating its viability against traditional machine 

learning techniques. The proposed CNN model balanced accuracy and computational 

efficiency, outperforming the KNN in speed and being more practical than the SVM 

in training duration. The experimental results highlighted CNN’s capability for rapid 

learning and generalization without significant overfitting, aligning well with the 

needs of industrial applications in an Industry 4.0 context. 

Future research will focus on further optimization of the CNN architecture for de-

fect detection, exploring the effects of varying layer depths and activation functions. 
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Additional work could also investigate using real-time data streams to enhance the 

model’s predictive capabilities and adaptability to different manufacturing environ-

ments. Another promising direction is integrating attention mechanisms and other 

recent innovations in deep learning to improve defect detection accuracy and compu-

tational efficiency. Lastly, extending the application of the proposed model to other 

areas in manufacturing and beyond presents a significant opportunity for broader 

impact. 
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Fig. 3.  Architecture of the proposed CNN. 



 Data Science and Engineering (DSE) Record, Volume 6, issue 1.          528 

 

 

 

Fig. 4. Training and Validation Loss over Epochs

 

Fig. 5. Training and Validation Accuracy over Epochs  
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