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Abstract. White blood cell (WBC) classification plays a pivotal role in diagnos-

ing and monitoring various medical conditions, particularly hematological and 

immune-related disorders. This study explores the application of machine learn-

ing (ML) and deep learning (DL) techniques to classify WBCs, leveraging their 

potential to enhance diagnostic precision and efficiency. Using a dataset of 

50,000 2D images from the University of North British Columbia, we develop 

and evaluate models for categorizing WBCs into four key types: eosinophils, 

lymphocytes, monocytes, and neutrophils. The proposed methodology integrates 

data augmentation, feature extraction, and advanced classification algorithms, in-

cluding Convolutional Neural Networks (CNNs) and other statistical approaches. 

Performance metrics such as accuracy, precision, recall, and F1-score guide the 

optimization of model architecture and training processes. Experimental results 

demonstrate the effectiveness of the developed models in achieving high classi-

fication accuracy, offering a reliable and automated tool for WBC identification. 

This research underscores the potential of AI-driven solutions to improve clinical 

workflows, particularly in resource-limited settings, by providing accessible and 

cost-effective diagnostic support. 

Keywords: Convolution Neural Network (CNN), Deep Learing, Machine 

Learning, White Blood Cells (WBCs). 

1 Introduction 

White blood cells are essential components of the human immune system, playing a 

critical role in defending the body against infections, allergens, and diseases. Accurate 

classification of WBCs into their subtypes—eosinophils, lymphocytes, monocytes, and 

neutrophils—is crucial for diagnosing and monitoring a wide range of medical condi-

tions, including autoimmune disorders, infections, and leukemia. Traditional methods 

of WBC classification often rely on manual microscopy, which can be time-consuming, 

labor-intensive, and prone to human error. While automatic blood cell analyzers pro-

vide a more efficient alternative, their high cost, complex maintenance requirements, 



Data Science and Engineering (DSE) Record, Volume 6, issue 1.                                            414 

and limited accessibility in resource-constrained environments pose significant chal-

lenges. 

Advancements in machine learning and deep learning have opened new avenues for 

automating WBC classification, offering potential solutions that are both accurate and 

scalable. These techniques, particularly Convolutional Neural Networks, excel in im-

age analysis tasks by learning complex spatial hierarchies of features directly from data. 

By leveraging ML and DL, it is possible to develop systems that classify WBCs with 

high precision and efficiency, even in diverse clinical and resource-limited settings. 

This study focuses on the development of a robust WBC classification system uti-

lizing 2D blood smear images sourced from the University of North British Columbia 

dataset. The research incorporates advanced data augmentation techniques, feature ex-

traction methods, and a combination of ML and DL models to achieve superior classi-

fication performance. By addressing key challenges such as data variability and com-

putational efficiency, this work aims to contribute to the growing field of AI-driven 

medical diagnostics, providing a valuable tool for improving healthcare outcomes. 

2 Literature Review 

Classifying white blood cells is an important task in medicine, helping doctors diag-

nose infections and track immune system problems. Many studies have looked into 

using machine learning and deep learning methods to improve how accurately and 

quickly WBCs can be classified. Below is key contributions in this domain: 

2.1 Traditional Machine Learning Approaches 

Mu-Chun S. et al. (2014) proposed a neural network-based approach to automate 

WBC classification. By leveraging advanced feature extraction methods, their system 

achieved high effectiveness and robustness, providing a reliable tool for automating 

medical image diagnostics. 

Abdullah E. et al. (2019) utilized six ML algorithms, including Random Forest, 

k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), Naive Bayes, Decision 

Trees, and Multinomial Logistic Regression (MLR), for WBC classification from mi-

croscopic blood smear images. Among these, MLR achieved the highest success rate, 

with an average test accuracy of 95%. 

2.2 Deep Learning Approaches 

 Made Satria W. (2018) conducted a comparative study between deep learning and 

traditional ML techniques for WBC classification. Their findings revealed that deep 

learning methods significantly outperformed traditional approaches such as MLP, 

KNN, and SVM, achieving an accuracy of 99.5%. The study demonstrated the robust-

ness of DL techniques and their reduced dependency on manual feature extraction. 

Muhammed Y. et al. (2019) explored the application of CNNs for WBC classifica-

tion, demonstrating the effectiveness of image preprocessing techniques such as 
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Gaussian and median filters in enhancing classification accuracy. The study under-

scored the reliability of CNNs in diagnosing diseases, particularly when combined with 

appropriate preprocessing. 

 Sarang S. et al. (2022) implemented the DenseNet121 architecture for automated 

WBC classification. The model was trained and evaluated using various batch sizes (8, 

16, 32, and 64) and optimized with the Adam optimizer over 10 epochs. The study 

highlighted the model's capability to improve both the efficiency and accuracy of WBC 

classification. 

 Mohamad A. et al. (2023) investigated advanced deep learning models, including 

Google Vision Transformer (ViT) and pre-trained CNN models from ImageNet 

ILSVRC, for WBC classification. Their study focused on peripheral blood smear im-

ages from the PBC and BCCD datasets. The results highlighted the superior perfor-

mance of Google ViT in classifying four types of WBCs. The authors emphasized the 

importance of balanced data augmentation to avoid negative impacts on classification 

accuracy. 

2.3 Hybrid and Advanced Models 

Tulasi Gayatri D. et al. (2024) introduced a hybrid model, ABCNM, which ad-

dressed challenges such as dynamic variations in WBC images. This model outper-

formed conventional CNNs and other state-of-the-art techniques, demonstrating su-

perior performance and reduced computational complexity. 

3 Methodology 

3.1 Dataset 

 This research utilizes a dataset sourced from the University of Northern British Co-

lumbia (UNBC), containing 349 high-resolution microscopic images of white blood 

cells. The dataset is separated into four distinct categories based on cell types as follws: 

1. Neutrophils: These are polymorphonuclear cells essential for combating bac-

terial infections as shown in Figure 1. 

 

              

 

 

 

 

 

 

 

Figure 1. Shows Neutrophils. 

   

2. Eosinophils: Specialized cells involved in allergic reactions and defense 

against parasites as shown in Figure 2. 
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Figure 2. Shows Eosinophils. 

3. Lymphocytes: Small white blood cells critical for adaptive immune responses, 

including antibody production as shown in Figure 3. 

 

      

 

 

 

 

 

 

 

Figure 3. Shows Lymphocytes. 

 

4. Monocytes: These cells differentiate into macrophages and dendritic cells, cru-

cial for inflammation and tissue repair as shown in Figure 4. 

 

      

 

 

 

 

 

 

 

Figure 4. Shows Monocytes. 

 

 

3.2 Exploratory Data Analysis 

The dataset presents a class imbalance as show in Table 1, has many more neutro-

phils than other types. This imbalance is a common challenge in medical imaging da-

tasets. 

Table 3.1. Table shows the number of each type of white blood cell. 

 

Types of  white blood cell Number 
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Neutrophil 207 

Eosinophils 88 

Lymphocytes 33 

Monocytes 21 

 

3.3 Methodology 

In this study has data architechture for creating the machine learning and deep learn-

ing model can be separated into three main section that consist of data preprocessing 

section, feature extraction section, model development section, and proposed model. 

3.3.1 Data Pre-processing Section 

The section is critical to ensure the dataset is prepared effectively for model training 

and evaluation. This section have two key components as followings. 

1) Data Augmentation: According the issue of class imbalance, data augmenta-

tion techniques were applied to artificially increase the dataset. Each image in          

the dataset was transformed using rotation, ensuring that each class contained  

at least 2,500 images as shown in Table 2. The transformation applied to an 

image can be mathematically represented as: 

 

I′ = T(I, θ)                   ----- (1) 

 

Where I is the original image,  

  T represents the transformation function, 

  𝜃 is the rotation angle (e.g., 𝜃 ∈ {−45 ∘, −30 ∘, 0 ∘, 30 ∘, 45 ∘} , 

       I′ is the original image. 

Table 3.2. Table shows the number of each classes after data augmentation. 

 

Types of  white blood cell Number 

Neutrophil 2499 

Eosinophils 2497 

Lymphocytes 2483 

Monocytes 2478 

 

2) Dataset Splitting: The dataset divided into there subsets to facilitate model       

development as shown in Table 2. First subset is training dataset (60%) used for 
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training the model. Second subset is validation set (20%) used for hyperparam-

eter tuning and performance monitoring and the last subset is test set (20%) 

resered for evaluating the model on unseen data. To maintain class distribution 

across subset, Stratified Sampling was used during the splitting process to 

easure the proportions of each class were consistent. This was achieved usinf 

the train_test_split function from Scikit-learn. 

Table 3.3. Table shows the number of subset in data splitting. 

 

Types of  white 

blood cell 

Training dataset Valiation dataset Test dataset 

Neutrophil 1499 500 500 

Eosinophils 1498 500 499 

Lymphocytes 1489 497 497 

Monocytes 1487 495 496 

 

3) Resizing: All images were resized to 224 × 224 pixels to match the input size 

of the pre-trained models. 

4) Normalization: The pixel values were scaled to a ranges between 0 and 1 using 

this formula as Equation 2. This equation ensures the images are in the same 

format as the pre-trained model expect. 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑒𝑑 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 =  
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒255

255
                       -----(2) 

3.3.2 Feature Extraction Section 

This section focuses on extracting importamr patterns from white blood cells 

(WBCs) images. These patterns, called “features”, are used by the classifier to te’’ the 

difference between the WBC classes. We used pre-trained models, are deep learning 

networks trained on large datasets like ImageNet. They have already learned to identify 

features in millons of images, such as edges, textures, shapes, and objects. These 

learned features can be reused for classifying with blood cells.  

1) VGG16: VGG16 is a deep convolution neural network used for images 

recognition. It has 16 layers, including 13 convolution layers and 3 fully 

connected layers as Figure 6. In feature extraction, we focus on the           

convolution layers, which capture important features of the image. 
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Figure 6.  Shows the VGG16 archiyectures. 

3.3.3 Model Development Section 

This section describes the development of three machine learning models: Decision 

Tree, Multinomial Logistic Regression (MLR), and Random Forest. Each model was 

selected based on its suitability for white blood cell (WBC) classification. The               

development process involved data preprocessing, model training, performance       

evaluation, and comparative analysis to determine the best-performing approach. 

1) Decision Tree:  

A decision tree is a simple and powerful model that splits data into 

branches based on feature values, forming a tree-like structure. It works 

well for   classifying white blood cells (WBCs) into different types, such as            

Lymphocyte, Monocyte, Neutrophil, and Eosinophil. The main advantages 

of this model are its interpretability and ability to handle both numerical 

and categorical data. 

 Impurity Measures in Decision trees 

• Gini Index Formula (used to measure impurity): 

 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑖
2𝑛

𝑖=1                                  ----- (3) 

 

Where 𝑝𝑖  is the proportion of samples belonging to class i, 

     𝑛 is the number of classes. 

 

 

• Entropy Formula (another impurity measure): 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)
𝑛
𝑖=1                   ------(4) 

Where 𝑝𝑖  is the proportion of samples in class i. 

     𝑛 is the number of classes 

 

• Information gain Formula (used to decide the best split): 

 

𝐼𝐺 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑝𝑎𝑟𝑒𝑛𝑡 − ∑
𝑁𝑘

𝑁
∙ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑘

𝐾
𝑘=1      ------(5) 
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Where 𝑁𝑘  is the number of WBC samples in child node, 

     𝑁 is the total number of samples in the parent node, 

      𝐾 is the number of child nodes. 

 

 

2) Random Forest 

 Random Forest is an advanced ensemble learning model that builds     

multiple decision trees and aggregates their predictions to improve              

accuracy and stability. It is particularly effective in classifying WBCs into 

types, such as distinguishing Eosiniphils from Monocytes. This method    

reduces overfitting and efficiently captures complex relationships in the 

data. 

 Additionally, Random Forest can analyze feature importance, allowing 

the identification of key factors that influence classification, such as         

Nucleus size, Cytoplasm color. 

 

• Prediction Formula (Majority Voting Mechanism) 

 

      𝑦 = 𝑚𝑜𝑑𝑒(𝑦1, 𝑦2, … , 𝑦𝑚)                           ------(6) 

Where  𝑦𝑖  is the prediction from the i-th decision tree, 

   𝑚 is the tltal number of decision trees in the ensemble, 

  𝑦 is the class that appears most frequently. 

3) Multinomial Logistic Regression (MLR) 

Multinomial Logistic Regression (MLR) is a generalization of logistic        
regression designed for multi-class classification problems, where the      

target variable has more than two categories. Unlike binary logistic             

regression, which differentiates between two classes, MLR assigns        

probabilities to multiple possible outcomes using the softmax function. 

For a classification problem with K classes, the probability that a WBC 

sample 𝑥 belongs to class 𝑗 is computed as 

        𝑃(𝑦 = 𝑗|𝑥) =  
𝑒

𝛽𝑗
𝑇𝑥

∑ 𝑒
𝛽𝑘

𝑇𝑥𝐾
𝑘=1

                              -----(7) 

Where 𝑃(𝑦 = 𝑗|𝑥) is the probability that the WBC belongs to class j. 

𝛽𝑗  is the coefficient vector for class j (weights assigned to features). 

𝑥 is the feature vector respresenting the WBC sample. 

𝐾 is the total number of WBC classes. 
• Loss Function (Cross-Entropy Loss): The model is trained by  

minimizing the negative log-likelihood, also known as the cross-

entropy loss: 

 

    𝐿 =  − ∑ ∑ 𝑦𝑖,𝑗log P(𝑦 = 𝑗|𝑥𝑖)𝐾
𝑗=1

𝑁
𝑖=1                  ------(8) 
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  Where 𝑁 is the total number of WBC samples. 

     𝑦𝑖,𝑗 is 1 if sample  belongs to class j, otherwise 0. 

     𝑃(𝑦 = 𝑗|𝑥𝑖)is the predicted probability for class j. 

 

4) Convolution Neural Network (CNN) 

 CNN is a deep learning model designed for analyzing grid-structured 

data like images. Unlike traditional machine learning methods that depend 

on handcrafted features, CNN automatically learns spatial feature hierar-

chies through convolutional layers, activation functions, pooling opera-

tions, and fully connected layers as Figure 7. This approach is highly effec-

tive for visual pattern recognition tasks, including image classification and 

medical image analysis. 

 

 

 

 

 

 

 

 

 

Figure 7. Convolution Neural Network Structure 

 Main component of CNN consist of: 

• Convolutional Layers: Extract local spatial features using filters. 

• Activation Functions: Introduce non-linearity, typically using 

Rectified Linear Unit (ReLU). 

• Pooling Layers: Reduce spatial dimensions while retaining key 

information, commonly using Max Pooling. 

• Flatten Layer: Converts multi-dimensional output into a single 

vector for further processing. 

• Fully Connected Layers: Integrate features for prediction by 

computing weighted sums. 

• Output Layer: Produces class probabilities through Softmax. 

 Training involves minimizing categorical cross-entropy loss, measuring 

differences between predicted and true class probabilities. The model's fi-

nal classification is determined by selecting the class with the highest prob-

ability. 

 This structured approach allows CNN to effectively classify white blood 

cells (WBC), providing insights for practical medical applications and in-

forming the proposed model outlined in the subsequent section. 
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3.4 Proposed Model 

 Despite significant progress in automated white blood cell (WBC) classification, 

there remains a practical gap between high-performing research models and real-world 

constraints faced by clinical laboratories. Current deep learning models typically re-

quire extensive computational resources, long training periods, specialized hardware, 

and often lack interpretability. Traditional machine learning approaches, although in-

terpretable and efficient, usually achieve limited accuracy. This research gap highlights 

the need for hybrid frameworks that combine deep learning's robust feature extraction 

with classical machine learning's efficiency and interpretability. 

 To address these challenges, this study proposes a hybrid WBC classification pipe-

line that integrates feature extraction using a pre-trained VGG16 model with light-

weight classical classifiers: Decision Tree (DT), Multinomial Logistic Regression 

(MLR), and Random Forest (RF). This hybrid architecture aims to balance accuracy, 

efficiency, and interpretability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. White Blood Cell Classification: Machine Learning and Deep Learning 

 

The proposed system consists of two parallel pipelines: 

1. Hybrid Model: A pre-trained VGG16 CNN extracts high-dimensional, dis-

criminative features from WBC images. These features, capturing textures, 

shapes, and edges, are then classified using interpretable, low-resource ma-

chine learning algorithms (DT, MLR, RF), fine-tuned through hyperparameter 

optimization. 

2. CNN Model: An alternative pipeline uses an end-to-end CNN directly trained 

on raw images, featuring convolutional layers with varying kernel sizes, Batch 

Normalization, ReLU activations, pooling layers, fully connected dense lay-

ers, and dropout for regularization. It uses categorical cross-entropy loss opti-

mized via Stochastic Gradient Descent (SGD) with a learning rate scheduler. 
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 Both paths use identical datasets and preprocessing, allowing empirical compari-

son of accuracy, computational efficiency, and interpretability, making the approach 

suitable for diverse clinical environments. 

 

3.5 Model Evaluation 

The model evaluation process aims to measure how well the machine learning mod-

els classify white blood cells (WBCs) into their respective categories. This step is      

critical to ensure the model’s predictions are accurate, reliable, and generalizable to 

new data. 

To evaluate the performance of each model, several standard metrics were used the 

ecaluation metrics as below: 

 

1) Accuracy: Measure the proportion of correctly classified WBCs among all 

samples. 

 

    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
            ------(9) 

 

2) Precision: Evaluates the proportion of correctly identified WBCs for each 

type. 

 

     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑢𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
           ------(10) 

3) Recall (Sensitivity): Measures the ability to correctly identifiey all WBCs 

of a specific type. 

 

     𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)
             ------(11) 

 

4) F1-Score: Balances precision and recall into a single metric. 

 

               𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑅𝑒𝑠𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                        ------(12) 

 

5) Confusion Matrix: Provides a summary of predictions, showing the true 

and predicted classes of WBCs. 

4 Results 

This chapter summarizes the experimental results for white blood cell (WBC) clas-

sification using four models: Decision Tree (DT), Random Forest (RF), Multinomial 

Logistic Regression (MLR), and Convolutional Neural Network (CNN). All models 

were trained, validated, and tested on the same dataset to ensure comparability. 
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4.1 Individual Model Results 

4.1.1 Decision Tree (DT)  

The DT model, optimized via grid search achieved validation accuracy of 57.93% 

and test accuracy of 58.23%. 

Table 4.1 Classification Report of Decision Tree Model on Test Set 

 

Class Precision Recall F1-Score Support 

EOSINOPHIL 0.50 0.52 0.51 499 

LYMPHOCYTE 0.65 0.64 0.65 497 

MONOCYTE 0.68 0.67 0.68 496 

NEUTROPHIL 0.51 0.50 0.50 500 

4.1.2 Random Forest (RF) 

The RF model demonstrated strong generalization with validation accuracy of 

85.19% and test accuracy of 83.79%. 

Table 4.2 Classification Report of Random Forest Model on Test Set 

 

Class Precision Recall F1-Score Support 

EOSINOPHIL 0.79 0.68 0.73 499 

LYMPHOCYTE 0.89 0.94 0.92 497 

MONOCYTE 0.86 0.95 0.91 496 

NEUTROPHIL 0.80 0.78 0.79 500 

 

4.1.3 NMultinomial Logistic Regression (MLR) 

The MLR model achieved excellent performance with validation accuracy of 

91.42% and test accuracy of 90.76%. 

Table 4.3 Classification Report of MLR Model on Test Set 

 

Class Precision Recall F1-Score Support 

EOSINOPHIL 0.86 0.82 0.84 499 

LYMPHOCYTE 0.94 0.98 0.96 497 

MONOCYTE 0.94 0.98 0.96 496 

NEUTROPHIL 0.88 0.85 0.87 500 
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4.1.4 Convolution Neural Network (CNN) 

The CNN model featured a deeper and wider network architecture with multiple 

convolutional layers incorporating 1×1 and 3×3 kernels, increased filter counts, fully 

connected layers with enhanced units (1024), and the integration of Batch Normaliza-

tion and Dropout for effective regularization. The model was trained using the Stochas-

tic Gradient Descent (SGD) optimizer with a learning rate scheduler. 

The final CNN achieved a test accuracy of 92.62%, indicating robust generalization 

and high discriminative power. 

Table 4.4 Classification Report of CNN Model on Test Set 

 

Class Precision Recall F1-Score Support 

EOSINOPHIL 0.87 0.87 0.87 499 

LYMPHOCYTE 0.99 0.97 0.98 497 

MONOCYTE 0.98 1.00 0.99 496 

NEUTROPHIL 0.87 0.86 0.87 500 

 

Figure 9 displays the loss curves for the final CNN model. Both training and valida-

tion loss decrease steadily and converge, with no significant gap between them, indi-

cating robust generalization and effective regularization. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Training and Validation Loss Comparions 

4.2 Comparative Evaluation 

The comparative analysis indicated CNN as the best-performing model, closely fol-

lowed by MLR and RF. DT showed the weakest performance. CNN offered optimal 

accuracy, while MLR and RF provided valuable interpretability and efficiency. These 

results provide practical insights for model selection in clinical settings. 
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4.3 Statistical Significance Testing 

A paired t-test was used to compare the classification accuracy of the CNN model 

and the Hybrid model (VGG16 + MLR). Predictions were binarized (1 = correct, 0 = 

incorrect) for direct sample-wise comparison. The test yielded: 

 

            t = 2.082, p = 0.037 

 

Since the p-value is below 0.05, the result indicates a statistically significant differ-

ence in accuracy between the two models at the 95% confidence level. While the Hy-

brid model (90.85%) offers faster training and lower resource usage, the CNN model 

(92.62%) achieved significantly higher accuracy. 

5 Conclusion 

This section summarizes and interprets the performance results for white blood cell 

(WBC) classification using Decision Tree (DT), Random Forest (RF), Multinomial 

Logistic Regression (MLR), and Convolutional Neural Network (CNN) models. 

Emphasis is placed on their strengths, limitations, and particular challenges in 

differentiating between morphologically similar cell types, especially EOSINOPHIL 

and NEUTROPHIL. 

 

5.1 Interpretation of the classification results 

5.1.1 Decision Tree (DT)  

The DT model achieved the lowest accuracy (58.23%) and macro F1-score (0.58). 

Although highly interpretable, it was unable to handle complex and subtle visual 

differences effectively. Notably, misclassifications frequently occurred between 

EOSINOPHIL and NEUTROPHIL due to similar granularity and nuclear lobation 

features, highlighting the DT’s rigid, threshold-based limitations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Misclassified of Decision Tree Model 



Data Science and Engineering (DSE) Record, Volume 6, issue 1.                                            427 

5.1.2 Random Forest (RF)  

The RF significantly outperformed DT, achieving 83.78% accuracy and an F1-score 

of 0.83. Ensemble learning reduced overfitting, but confusion remained pronounced 

between EOSINOPHIL and NEUTROPHIL, reflecting the persistent challenge of 

distinguishing visually overlapping morphological features despite improved model 

complexity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Misclassified of Random Forest Model 

5.1.3 Multinomial Logistic Regiression (MLR)  

The MLR paired with deep features from VGG16, reached high performance (accu-

racy 90.76%, macro F1-score 0.91). It effectively leveraged high-quality feature ex-

traction, yet still faced challenges differentiating EOSINOPHIL from NEUTROPHIL 

due to overlapping morphological characteristics. This result underscores the inherent 

limitations of linear classifiers in scenarios involving visually subtle distinctions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Misclassified of MLR Model 
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5.1.4 Convolution Neural Network (CNN)  

The CNN model achieved the highest performance overall (accuracy 92.62%, macro 

F1-score 0.93), benefiting from its ability to learn hierarchical visual features directly. 

The robust architecture, combined with effective regularization (Batch Normalization, 

Dropout), greatly enhanced generalization. Nevertheless, EOSINOPHIL-

NEUTROPHIL misclassification persisted, emphasizing the continuing challenge 

posed by their close morphological similarities. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Misclassified of CNN Model 

 

All models consistently faced difficulty distinguishing EOSINOPHIL from 

NEUTROPHIL, which share overlapping nuclear shapes, granularity, and size. Future 

research should focus on incorporating additional differentiating features or more so-

phisticated architectures to address this ongoing challenge. 

5.2 Model Benchmarking Study 

 

Our VGG16 + Multinomial Logistic Regression (MLR) and custom CNN models 

achieved high classification performance on peripheral blood smear images (MLR: 

90.76% accuracy, F1-score: 91%; CNN: 92.62% accuracy, F1-score: 93%). When 

benchmarked against ICSH clinical standards (accuracy ≥ 90%, F1-score 90–95%) and 

commercial analyzers (e.g., DM96™, DI-60), both models meet baseline clinical re-

quirements. 

5.3 Model Benchmarking Study 

 

A paired t-test comparing CNN and Hybrid (VGG16 + MLR) yielded t = 2.082,          
p = 0.037, indicating a statistically significant performance difference at the 95% con-

fidence level. While CNN outperformed the Hybrid model in accuracy, the Hybrid 
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model remains a practical alternative for scenarios requiring faster training, lower        

resource usage, or greater interpretability. 

6 Discussion and Feture Work 

This chapter synthesizes experimental findings, highlighting the strengths and limi-

tations of each classification model while suggesting directions for future research in 

automated white blood cell (WBC) classification. 

 

 

6.1 Key Strengths 

6.1.1 Comprehensive Model Comparison Four classification paradigms 

Decision Tree (DT), Random Forest (RF), Multinomial Logistic Regression (MLR), 

and Convolutional Neural Network (CNN)—were evaluated under identical 

preprocessing and dataset conditions, enabling fair and meaningful performance 

comparisons. 

6.1.2 Integration of Deep and Classical Features 

The hybrid approach combining VGG16-extracted deep features with interpretable 

MLR achieved 90.76% accuracy, demonstrating a balanced trade-off between 

performance and explainability for clinical applications. 

6.1.3 Rigorous Error Analysis 

Detailed confusion matrix and per-class error analyses were conducted to understand 

model behavior, particularly the recurrent misclassification between morphologically 

similar classes such as EOSINOPHIL and NEUTROPHIL. 

 

6.1.4 Reproducible Evaluation Protocol 

All experiments utilized fixed random seeds, stratified dataset splits, and consistent 

preprocessing pipelines, ensuring reliable and reproducible benchmarking. 

 

6.1.5 Statistical Significance of Model Comparison 

A paired t-test confirmed that the CNN model's superior accuracy (92.62%) com-

pared to the Hybrid model (90.85%) is statistically significant (t = 2.082, p = 0.037), 

reinforcing the robustness and reliability of the performance difference observed be-

tween the two models. 

6.2 Limitations 

6.2.1 Morphological Overlap 

All models faced challenges distinguishing EOSINOPHIL from NEUTROPHIL due 

to inherent visual similarities in granule density and nuclear structure, suggesting a lim-

itation of appearance-based classification alone. 
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6.2.2 Dataset Size and Diversity 

The dataset included 349 images per class, with limited staining and imaging varia-

bility, potentially reducing model generalizability to diverse clinical environments. 

 

6.2.3 Single Imaging Modality 

Dependence on standard bright-field microscopy limited the visibility of nuanced 

cellular features that could be more apparent under alternative imaging techniques. 

 

6.2.4 Simplified Architectures and Preprocessing 

The study employed basic CNN architectures and general preprocessing methods. 

Incorporating cell-specific preprocessing or performing architecture search may yield 

improved performance. 
 

 

6.3 Future Research Directions 

6.3.1 Multimodal Imaging 

Incorporating advanced imaging techniques like fluorescence or phase contrast mi-

croscopy could provide additional cues for difficult classifications. 
 

6.3.2 Attention Mechanisms 

Adding spatial attention modules or transformer-based architectures could help 

models better localize key morphological features such as granules or nuclear contours. 
 

6.3.3 Transfer Learning and Fine-Tuning 

Utilizing large-scale hematology datasets for pretraining followed by domain-spe-

cific fine-tuning may enhance model robustness and cross-protocol adaptability. 
 

6.3.4 Interpretability and Human Trust 

Employing model interpretability tools like Grad-CAM or SHAP can help identify 

which visual features contribute most to predictions, thereby building clinician trust. 
 

6.3.5 Clinical Validation  

A real-world prospective study comparing automated predictions with expert anno-

tations on live clinical data would assess system reliability, diagnostic utility, and real-

time integration feasibility. 

6.3.6 Advanced Image Processing 

Integrating advanced techniques such as cell segmentation, contrast enhancement, 

and granule-specific filtering could yield cleaner inputs, minimize inter-class confu-

sion, and enhance overall model performance. 
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