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Abstract. This study aims to develop a system for estimating the portion size and 

energy of Thai food from images using deep learning techniques. The proposed 

system supports dietitians and health-conscious individuals by enabling 

automated and accurate food intake assessment. The system consists of two main 

components: (1) object detection using YOLOv11 to simultaneously identify 

food items and reference coins in an image, and (2) food weight estimation using 

ResNet101, with reference coin serving as physical references for real-world size 

scaling. The estimated food weight is then used to calculate nutritional values 

based on a Thai food database. Experimental results demonstrate that annotating 

object boundaries with Smart Polygon significantly improves model accuracy 

and stability compared to the traditional Bounding Box method, yielding higher 

Precision, Recall, F1-score, and mAP. Among the tested models, ResNet101 with 

coin references achieved the best weight estimation performance, with a Mean 

Absolute Error (MAE) of 71.12 grams and Root Mean Squared Error (RMSE) of 

91.56 grams. This system is suitable for real-world applications in hospitals, 

restaurants, and personal nutrition tracking. 
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1 Introduction 

     Malnutrition, particularly among elderly patients, is a persistent concern in hospital 

care. To assess food intake, nutritionists traditionally rely on a precise method of 

weighing food portions before and after a meal. While this approach is highly accurate, 

it is time-consuming and impractical for continuous use, especially in high volume 

healthcare settings where staff resources are limited. Computer vision-based systems 

offer a promising solution by enabling automated food intake monitoring through 

image analysis. A previous study by Ruenin et al. (2020) [1] introduced machine 

learning systems designed to estimate the amount and calories of food consumed by 

hospital patients. These systems used object detection and regression techniques to 

process images of meals served in segmented trays. While effective in controlled 

settings, their use is limited when applied to real-world dining scenarios where dish 

presentation varies widely. This study proposes a solution that addresses these 

challenges by combining object detection with real-world scaling. By using YOLOv11 

to detect food and coins, and ResNet101 to estimate food weight, the system calculates 
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nutritional intake from images in an automated and scalable way. This approach aims 

to support dietary monitoring not only in hospitals but also in real-world environments, 

where food is served in informal and varied formats. 

2 Literature Review 

     This research aims to develop a food image analysis system capable of automatically 

classifying food types and estimating their weights for calculating energy and nutrients. 

Therefore, this chapter reviews the related literature in two main areas: (1) food 

detection and (2) food weight estimation, presented chronologically. It also explains 

the techniques, advantages, limitations, and research gaps that inform the approach 

proposed in this study. 

2.1 Food Detection 

Zhang, H. et al. (2015) [2] developed Snap-n-Eat, one of the first applications to use 

Convolutional Neural Networks (CNNs) for classifying food types from mobile phone 

images. A key feature of the system was its end-to-end capability, handling both food 

classification and energy estimation from a single image. 

Myers, A. et al. (2015) [6] developed Im2Calories, which combined CNNs with the 

USDA food database to present results in terms of energy and nutritional values. The 

system was functional on mobile devices and served as one of the foundations for the 

development of automatic food diaries. 

Ege, T., & Yanai, K. (2019) [3] proposed a Multi-Task Learning approach that 

integrates detection with energy estimation within a single network. This method 

reduces processing time and system complexity 

Tan, M. et al. (2020) [4] introduced EfficientDet, which, although not specifically 

designed for food-related tasks, has been adapted for food image analysis to reduce 

model size while maintaining high accuracy—making it suitable for resource- 

constrained devices. 

Nguyen, T. et al. (2024) [5] presented FoodMask, an instance segmentation-based 

approach to separate individual food items on a single plate. This method addresses the 

challenge of overlapping and mixed dishes such as Thai food, where traditional 

bounding boxes struggle to segment components accurately. 

2.2 Food Weight Estimation 

He, Y. et al. (2013) [7] proposed a method for estimating food weight based on the 

segmented area of the food and predefined density from a top-down (vertical) camera 

angle. 

Wang, Z. et al. (2018) [8] developed a deep learning-based system to estimate food 

volume from a single image without requiring a depth camera. This enabled usage on 
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standard consumer devices, although it still required consistent camera angles and plain 

backgrounds for accuracy.  

Ye, H. et al. (2019) [9] introduced a concept of cross-domain learning by training 

models on both real and synthetic images. This allowed models to generalize to new 

image domains without needing retraining, although performance degraded in cases 

with overlapping foods or cluttered scenes. 

Garcia et al. (2023) [10] proposed a system that uses physical reference objects, such 

as coins or spoons with known dimensions, to calculate the image scale. This scale was 

then used to convert food bounding boxes into real-world dimensions and estimate 

weight. The study highlighted the system’s simplicity and practical accuracy, making 

it particularly suitable for use in restaurants and home environments. 

Fang, C. et al. (2024) [11] developed a method for estimating food volume from 2D 

images using 3D point cloud reconstruction. This approach converts flat images into 

depth-aware structures, allowing for more accurate weight estimation without the need 

for specialized cameras. However, it requires complex training data and highly accurate 

segmentation to separate food from background. 

3 Data and Methodology 

     The overall workflow of the proposed system is illustrated in Figure 1, which 

consists of four sequential components: data preparation, object detection, 

cropping and weight estimation, and nutrient calculation. 

 

Figure 1. Overall Workflow 
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3.1 Data Preparation 

     This section describes the steps involved in preparing the dataset used in this study. 

It includes data collection, data labeling with different annotation strategies, and data 

preprocessing and augmentation to improve the model’s performance and robustness. 

 

• Data Collection: The dataset used in this study consists of top-down view 

photographs, each containing only two types of objects. 

▪ Food: chicken rice, crispy pork rice, fried rice, pad thai, and pad see ew 

▪ Coins: 1 baht, 2 baht, 5 baht, and 10 baht coins 

See Figure 2 for an example of data collection. 

 

                                               Figure 2. Example of Data Collection 

 

• Data Labeling in Roboflow (https://roboflow.com): To support comparison 

between different levels annotation precision, the dataset was prepared in two 

versions. 

▪ Food items were annotated using Bounding Box, while coins were 

annotated using Smart Polygon. 

▪ Both food items and coins were annotated using Smart Polygon 

Example of these annotation strategies are shown in Figures 3a and 3b. 

               

         Figure 3a. Bounding Box Annotation           Figure 3b. Smart Polygon Annotation 

https://roboflow.com/
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• Data Preprocessing and Augmentation: All images were preprocessed through 

resizing and normalization to ensure consistency across the dataset. Data 

augmentation was applied using Roboflow (https://roboflow.com) to enhance 

model robustness under real-world conditions. Augmentations included random 

noise, brightness and contrast adjustments, and slight geometric transformations 

(e.g., shear, blur). Coins and food items were augmented differently to reflect 

their distinct visual properties and roles in the detection process. 

3.2 Object Detection Model 

     This section outlines the procedures used for training and evaluating the YOLOv11 

model in this study. It details the model selection, environment setup, training 

configurations, and performance monitoring to ensure robust object detection results. 

• Model Selection: YOLOv11 was chosen for object detection due to its high 

accuracy and strong performance in multi-class object identification. 

• Environment Setup: Training was performed on a Tesla T4 GPU (15GB 

VRAM) with CUDA 12.4 and driver version 550.54.15. Libraries used include 

ultralytics, supervision, and Google Drive mount for data management. 

• Training Configuration: The model was initialized with yolo11s.pt, using a 

batch size of 32 for 50 epochs. Input images were resized to 640×640 pixels. 

Mixed precision (AMP) and caching were enabled to optimize training. Model 

checkpoints were saved every 10 epochs. 

• Evaluation and Fine-Tuning: Loss, accuracy, and mean Average Precision 

(mAP) were monitored throughout training. Checkpoints were used to track 

performance and adjust hyperparameters as needed.    

3.3 Cropping and Weight Estimation 

     This section describes the data preprocessing, experimental setup, and methods used 

to estimate food weight with ResNet models. It includes the steps of cropping detected 

objects, computing scaling factors for coin-referenced predictions, and feeding the 

processed data into ResNet variants to generate weight predictions. 

• Image Preprocessing and Cropping: To prepare inputs for the ResNet model, 

object coordinates were exported from Roboflow in csv format, containing file 

names, object classes, and bounding box coordinates. The process involved 

reading the csv with Pandas, separating food and coin entries, and cropping the 

objects from the original images using OpenCV. Cropped images were resized 

https://roboflow.com/
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to 224×224 pixels while maintaining aspect ratio, applying black padding where 

necessary. Resulting images were stored in separate folders for food and coin. 

• Experiment Setup: Two experimental conditions were tested: one with a coin 

reference, using a coin-based scaling factor, and another without the coin 

reference as the baseline. Each condition was evaluated with three ResNet 

architectures: ResNet50, ResNet101, and ResNet152. 

• Coin-Based Scaling: The real-world width of the coin was used as a reference. 

The scaling factor was computed by dividing the known coin diameter (e.g., 

25.60 mm for a 10-baht coin) by its bounding box pixel width. 

• Model Input:  Cropped food images, along with the scaling factor (if applicable), 

were fed into the ResNet model to predict food weight. 

3.4 Nutrient Calculation 

     This section details how the estimated food weight is used to calculate nutrient 

content. Using the Thai Food Composition Database from the Institute of Nutrition, 

Mahidol University, the system retrieves the nutrient values for each food type and 

calculates the final nutrient amounts based on the estimated weight. 

1) Load the nutrient database file (.json format). 

2) Match the predicted food label to its corresponding entry in the database. 

3) Apply the formula: 

𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 = (
𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑝𝑒𝑟 100𝑔

100
) ×  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔) 

     According to the Thai Food Composition Database (Institute of Nutrition, Mahidol 

University, 2015), nutritional values for each food item are standardized per 100 grams 

of edible portion. 

4 Results and Evaluation 

     This section presents the experimental results and evaluation of the models 

developed in accordance with the methodology described in Section 3. The evaluation 

is divided into two parts: first, the training and validation evaluation, which compares 
model performance during training and validation, including both object detection 

using YOLOv11 and food weight estimation using ResNet50, ResNet101, and 

ResNet152, ultimately selecting the best-performing model for testing on unseen data; 

and second, the unseen test evaluation, where the selected models are tested on 
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previously unseen data to assess their generalization performance, including a 

comparison between models that use images with and without physical reference 

objects (coins) to validate the effectiveness of the proposed approach. 

 

4.1 Training and Validation Evaluation 

4.1.1 Evaluation of YOLOv11 for Object Detection 

     To compare the effectiveness of annotation strategies, two YOLOv11 models were 

trained under identical configurations using either Bounding Box or Smart Polygon 

labels. 

     Both models were evaluated using F1-Confidence curves, Precision-Recall curves, 

and mAP@0.5, focusing on both food items and coins. 

• F1-Confidence Curve Analysis:  

To compare the effectiveness of annotation strategies, two YOLOv11 models 

were trained under identical configurations using either Bounding Box or Smart 

Polygon labels. As shown in Figures 4a and 4b, the Smart Polygon model 

achieved a peak F1 score of 0.92 at a confidence threshold of 0.255, whereas 

the Bounding Box model only reached a peak F1 score of 0.64 at confidence 

threshold of 0.141. 

 

 
 

Figure 4a. F1-Confidence curve (Bounding Box) 

 
 

Figure 4b. F1-Confidence curve (Smart Polygon) 
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• Precision-Recall (PR) Curve Analysis: 

The PR curves in Figures 5a and 5b further confirmed the superior performance 

of the Smart Polygon model, which reached a mAP@0.5 of 0.915, compared to 

only 0.616 for the Bounding Box model. This difference was particularly 

notable in detecting complex food categories such as pad_see_ew and 

fried_rice. 

 

                              
 

Fig. 5a. Precision-Recall curve (Bounding Box) 

 

 

 
 

Fig. 5b. Precision-Recall curve (Smart Polygon) 

     Across both evaluation metrics, Smart Polygon annotation consistently improved 

model performance, especially for foods with irregular shapes, without compromising 

coin detection. These results highlight the importance of fine-grained annotation when 

applying object detection in real-world food analysis scenarios. 
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4.1.2 Evaluation of ResNet for Food Weight Estimation 

     Once food items were detected and isolated using YOLOv11, food weight 

estimation was conducted using ResNet-based regression models. ResNet (Residual 

Network) architectures are well established in computer vision tasks due to their ability 

to learn hierarchical features in complex image data. This study compared three 

variants: ResNet50, ResNet101, and ResNet152. Each was tested under two conditions: 

with coin reference, using a coin’s known diameter to compute a scaling factor 

(mm/pixel), and without coin reference, used as a baseline with no physical size input. 

The goal was to evaluate both prediction accuracy and model stability across different 

network depths. Models were assessed using training and validation loss curves. 

 

 

Fig. 6a. Training and validation loss – ResNet50 (with coin) 

 

 

Fig. 6b. Training and validation loss – ResNet101 (with coin) 
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Fig. 6c. Training and validation loss – ResNet152 (with coin) 

     The training and validation loss curves in Figures 6a, 6b, and 6c show the 

performance of the three ResNet models with coin reference. All models converged 

well, but ResNet101 in Figure 6b exhibited the most stable and balanced loss trajectory, 

indicating consistent learning and minimal overfitting. In contrast, ResNet152 in Figure 

6c, despite its deeper architecture, showed higher variance in the validation loss, 

suggesting sensitivity to noise or potential overfitting. Overall, these curves 

demonstrate that ResNet101 offered the best trade-off between accuracy and stability 

during training. 

 

4.2 Testing on Unseen Data 

     This section evaluates the performance of the proposed system on an unseen dataset 

to assess its generalization ability. The dataset consists of 100 images that were not 

used during training or validation, providing a direct and independent test of the 

system’s performance. It includes evaluations of the selected YOLOv11 model for food 

and coin detection, as well as the ResNet model for weight estimation, examining how 

effectively they perform in realistic, previously unseen scenarios. 

 

4.2.1 Testing the Selected YOLO Model on Unseen Data 

     To evaluate the generalization capability of the YOLOv11 model trained with Smart 

Polygon annotations, the model was tested on an unseen test set that was not used 

during training or validation. 

 

     The evaluation focused on both food classification and coin detection, using 

standard performance metrics: Accuracy, Precision, Recall, and F1-score. These 

metrics assess the model’s ability to correctly classify objects and avoid false 

predictions. 
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The definitions of the metrics are based on the following: 

 

• TP (True Positive): Correctly predicted as the target class 

• TN (True Negative): Correctly predicted as not the target class 

• FP (False Positive): Incorrectly predicted as the target class 

• FN (False Negative): Failed to predict the target class 

 

The metrics are calculated as: 

 

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 

• 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

• 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

 

     The overall classification performance of the YOLOv11 model, as shown in Table 

1, indicates a high level of accuracy in detecting food items but comparatively lower 

performance for coin detection. Specifically, food classification achieved an accuracy 

of 86.00%, an F1-score of 0.896, a precision of 0.867, and a recall of 0.862. In contrast, 

coin classification only reached an accuracy of 66.00%, with an F1-score of 0.680, 

precision of 0.688, and recall of 0.678, reflecting the greater challenge in detecting 

coins due to their small size and reflective surfaces. 

Table 1. Overall Classification Performance 

Metric 
Food 

Classification 

Coin 

Classification 

Accuracy 86.00 % 66.00 % 

F1-score 0.896 0.680 

Precision 0.867 0.688 

Recall 0.862 0.678 
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     As shown in Table 2, the precision, recall, F1-score, and support for each food 

category in the test dataset highlight the model’s performance. Crispy pork rice 

achieved the highest classification performance, with both precision and recall at 1.00, 

demonstrating excellent model accuracy for this dish. In contrast, fried rice had the 

lowest recall at 0.60, likely due to visual similarities with dishes like chicken rice and 

crispy pork rice. Despite these occasional confusions, most dishes had F1-scores above 

0.85, indicating strong overall robustness of the model in distinguishing between the 

five food categories. 

Table 2. Per-Class Performance (Food Categories) 

Food Type Precision  Recall  F1-score Support 

 

chicken_rice 

 

0.769 

 

1.000 

 

0.870 

 

20 

 

crispy_pork_rice 

 

0.909 

 

1.000 

 

0.952 

 

20 

 

fried_rice 

 

1.000 

 

0.600 

 

0.750 

 

20 

 

pad_see_ew 

 

1.000 

 

0.737 

 

0.848 

 

20 

 

pad_thai 

 

0.800 1.000 0.889 20 

 

     Coins serve as critical reference objects for estimating food weight via image 

scaling, and their classification performance is detailed in Table 3. The 10-baht coin 

was classified with perfect precision, recall, and F1-score of 1.00, indicating the model 

could consistently recognize it with high confidence. In contrast, the 1-baht and 5-baht 

coins had lower performance, particularly the 5-baht coin, which showed a recall of 

only 0.40, likely due to its small size and reflective surfaces. The 2-baht coin performed 

moderately well, achieving an F1-score of approximately 0.75. 

Table 3. Per-Class Performance (Coin Categories) 

Food Type Precision Recall F1-score Support 

 

1_thb_coin 

 

0.490 0.610 0.530 28 

2_thb_coin 

 
0.790 0.750 0.750 27 

5_thb_coin 

 
0.480 0.400 0.440 25 

10_thb_coin 

 
1.000 1.000 1.000 20 
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4.2.2 Testing of the Selected Resnet Model on Unseen Data 

     To assess the effectiveness of the selected ResNet model, this study evaluated 

ResNet101 (with coin reference) on an unseen test set. The model was tested on 100 

food images (20 images per food type) using standard performance metrics: Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), and a custom-defined 

Accuracy metric. The formulas are as follows: 

• Mean Absolute Error (MAE) 

Measures the average magnitude of errors between predicted and actual 

values: 

 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − ŷ𝑖|

𝑛

𝑖=1

 

 

• Root Mean Squared Error (RMSE) 

Gives higher weight to larger errors by squaring the differences:  

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=1

 

 

• Accuracy (%), as defined in this study 

The percentage of samples whose prediction error falls within ±MAE 

of the true value: 

 

           𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (
𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 |𝑦𝑖 − ŷ𝑖| ≤ 𝑀𝐴𝐸

𝑛
) ×  100 

 

To determine the benefit of using coin references in the images, the study compared 

the performance of ResNet101 with coin and ResNet101 without coin using the same 

test dataset. The dataset included 5 food categories with a total of 100 images. The 

average food weight in the test set was 209.87 grams, which closely matched the 

training set average of 208.14 grams, ensuring data consistency across sets. 

The comparison in Table 4 shows that including coin references improved estimation 

accuracy. The use of physical scale (coin diameter) enhanced the model’s ability to map 

pixel area to real-world food weight, particularly for visually ambiguous or irregular 

portions. Specifically, incorporating the coin reference reduced the Mean Absolute 

Error (MAE) by approximately 5 grams and the Root Mean Squared Error (RMSE) by 

around 6 grams. The model with the coin reference also achieved a notably higher 

accuracy of 56.00%, compared to only 48.00% without the coin, highlighting its 

improved ability to infer physical scale from pixel dimensions. 
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Table 4. Comparison of Resnet101 with and without Coin Reference 

Model MAE (g) RMSE (g) Accuracy (%) 

 

ResNet101 

(With Coin) 

 

71.12 91.56 56.00 

ResNet101 

(Without Coin) 

 

76.38 97.35 48.00 

 

     To further analyze model error patterns, the test set was divided into three weight 

ranges: Less than 150 grams, Between 150-250 grams, and Greater than 250 grams. 

This stratification enabled evaluation across different distributions. 

As shown in Table 5, the ResNet101 model with coin reference demonstrated 

varying performance across different food weight ranges. In the <150 g category, the 

model overestimated the actual average weight of 102.97 g with a predicted average of 

181.11 g, resulting in a prediction bias of +78.15 g, an MAE of 78.15 g, and an accuracy 

of 51.72%. For the 150–250 g range, the model achieved its best performance, showing 

a small negative bias of -2.02 g, an MAE of 28.38 g, and the highest accuracy of 

60.53%. In the >250 g range, the model underestimated the true average weight of 

316.30 g by 113.60 g, with an MAE of 114.17 g and an accuracy of 54.55%. These 

findings highlight the model’s overall robustness in the mid-range weights while 

pointing to areas for improvement in handling smaller and larger portion sizes. 

 

 Table 5. Performance of ResNet101(with coin) across Different Weight Ranges 

Weight  

Range 

Sample 

Size 

True 

Avg. (g) 

Predicted 

Avg. (g) 

MAE  

(g) 

Prediction 

Bias (g) 

Accuracy 

(%) 

 

< 150 g 

 

29 102.97 181.11 78.15 

 

+78.15 

 

51.72 

 

150 – 250 g 

 

38 199.03 197.01 28.38 -2.02 60.53 

 

> 250 g 

 

33 316.30 202.60 114.17 -113.60 54.55 
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     As detailed in Table 6, the accuracy and Mean Absolute Error (MAE) of the 

ResNet101 model with coin reference varied across different food types. For chicken 

rice, the model predicted an average weight of 181.11 g, slightly above the true average 

of 175.40 g, with a prediction bias of +0.35 g and an accuracy of 60.00%. Crispy pork 

rice showed a slightly larger underestimation of 19.69 g, resulting in an MAE of 60.06 g 

and an accuracy of 55.00%. Fried rice performed best, achieving the highest accuracy 

of 65.00% and a low bias of +4.09 g. In contrast, pad thai and pad see ew had larger 

underestimations of around 31 g each, with accuracies of 55.00% and MAEs of over 

60 g. These results suggest that the model’s predictive accuracy varies across different 

dishes, reflecting the challenges of estimating weights for visually similar or complex 

meals. 

Table 6. Accuracy and MAE of ResNet101(with coin) by Food Type 

Food Type 
Sample 

Size 

True 

Avg. (g) 

Predicted 

Avg. (g) 

MAE  

(g) 

Prediction 

Bias (g) 

Accuracy 

(%) 

 

Chicken_rice 

 

20 175.40 181.11 28.94 

 

+0.35 

 

60.00 

Crispy_pork_rice 

 

20 199.85 197.01 60.06 -19.69 55.00 

Fried_rice 

 

20 203.15 202.60 35.15 +4.09 65.00 

Pad_thai 

 

20 205.90 174.07 64.46 -31.83 55.00 

Pad_see_ew 

 

20 265.05 234.02 65.24 -31.03 55.00 
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5 Conclusion and Discussion 

     This section briefly summarizes the main conclusions and provides a discussion of 

the experimental findings. It also highlights potential limitations and suggests future 

work to enhance the model’s performance and expand the application scope. 

5.1 Conclusion 

     This research aimed to develop a food image analysis system based on deep learning 

for object detection, food classification, and food weight estimation from photographs. 

The system consists of two core modules: the YOLOv11 model for object detection 

and the ResNet101 model for estimating food weight. 

     The study compared two annotation techniques-Normal Box and Smart Polygon. 

Results indicated that Smart Polygon annotations significantly improved YOLOv11's 

performance across key metrics such as Precision, Recall, F1-score, and mAP. 

Furthermore, the loss curve of the Smart Polygon-trained model was smoother and 

more stable, reflecting efficient learning and reduced risk of overfitting. 

     For weight estimation, ResNet101 (with coin) provided the best trade-off between 

accuracy and stability, achieving a Mean Absolute Error (MAE) of 71.12 grams and a 

Root Mean Squared Error (RMSE) of 91.56 grams on the unseen test set. 

     Key findings from evaluations on unseen data include: YOLOv11 using Smart 

Polygon annotation achieved average Precision, Recall, and F1-score exceeding 0.96. 

Food classification reached an Accuracy of 86% and a Macro F1-score of 0.86. Dishes 

such as Crispy Pork Rice and Pad Thai were classified with high accuracy, while Fried 

Rice and Pad See Ew were more error prone. Coin classification achieved 66% 

Accuracy and a Macro F1-score of 0.68, with the 10-baht coin attaining perfect 

Precision and Recall. 

     ResNet101 with coin outperformed its version without coin on unseen data. The 

model with coin reduced MAE by approximately 5 grams and RMSE by 6 grams, and 

improved accuracy from 48.00% to 56.00%, confirming the benefit of using a coin as 

a reference object to aid in interpreting physical scale. 



Data Science and Engineering (DSE) Record, Volume 6, issue 1. 

                                             

397 

     An error distribution analysis by weight range showed optimal model performance 

for mid-range meals (150-250 grams), consistent with the training data average. The 

model tended to overestimate lighter meals (<150g) and underestimate heavier meals 

(>250g), demonstrating a regression toward the mean behavior. When grouped by food 

type, dishes with visually distinct and compact features such as Chicken Rice and Fried 

Rice yielded lower MAE and higher accuracy. Conversely, dispersed dishes like Pad 

Thai and Pad See Ew tended to be underestimation. 

5.2 Discussion 

     The use of Smart Polygon annotations significantly improved YOLOv11 

performance, especially for irregularly shaped objects like food. By eliminating 

excess background, the model could better learn specific object features, thus 

enhancing Precision, Recall, and mAP compared to Bounding Box. Among 

reference objects, the 10-baht coin was identified as the most effective due to its 

consistent classification accuracy, while other coins, particularly the 1-baht and 5-

baht, exhibited higher error rates. Therefore, the 10-baht coin is recommended as 

the standard reference object for accurate scaling in weight estimation. Regarding 

food classification, Chicken Rice, Crispy Pork Rice, and Pad Thai demonstrated 

high classification accuracy, whereas Fried Rice and Pad See Ew encountered 

greater classification challenges due to similar visual characteristics. The model 

showed directional estimation bias, for after-meal images, especially those under 

130 grams, being significantly overestimated, likely due to their 

underrepresentation in the training set. Conversely, full-plate meals exceeding 250 

grams were consistently underestimated, reflecting a regression toward the mean. 

Training environment constraints also played a role, as images were taken with 

limited dish and background diversity, such as plain white dishes or repetitive 

designs, causing background bias when the model faced unfamiliar environments. 

Furthermore, the limited size and diversity of the test set relative to real-world 

scenarios may have introduced high variance in metrics like Accuracy, Precision, 

and F1-score, ultimately affecting the model’s generalizability. 

5.3 Future Work 

     Future work should increase the number of after-meal images featuring 10-50% food 

remnants on the plate to better capture real-world scenarios and reduce overestimation 

biases. Additionally, implementing prediction correction logic using pixel area 

thresholds could further improve weight estimation accuracy. For example, using a 

correction formula as shown: 

𝒘𝒆𝒊𝒈𝒉𝒕 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 =  𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒘𝒆𝒊𝒈𝒉𝒕 ×  𝜶 + 𝜷  
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If α = 0.8 and β = −10g, the model adjusts predicted weight by reducing it 20% and 

subtracting an additional 10 grams. 

      

     This approach is particularly beneficial when the detected food area drops 

significantly, helping mitigate the tendency of the model to overestimate weight in 

these scenarios. 
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	• Model Selection: YOLOv11 was chosen for object detection due to its high accuracy and strong performance in multi-class object identification.
	• Environment Setup: Training was performed on a Tesla T4 GPU (15GB VRAM) with CUDA 12.4 and driver version 550.54.15. Libraries used include ultralytics, supervision, and Google Drive mount for data management.
	• Training Configuration: The model was initialized with yolo11s.pt, using a batch size of 32 for 50 epochs. Input images were resized to 640×640 pixels. Mixed precision (AMP) and caching were enabled to optimize training. Model checkpoints were saved...
	• Evaluation and Fine-Tuning: Loss, accuracy, and mean Average Precision (mAP) were monitored throughout training. Checkpoints were used to track performance and adjust hyperparameters as needed.
	• Experiment Setup: Two experimental conditions were tested: one with a coin reference, using a coin-based scaling factor, and another without the coin reference as the baseline. Each condition was evaluated with three ResNet architectures: ResNet50, ...
	• Coin-Based Scaling: The real-world width of the coin was used as a reference. The scaling factor was computed by dividing the known coin diameter (e.g., 25.60 mm for a 10-baht coin) by its bounding box pixel width.
	• Model Input:  Cropped food images, along with the scaling factor (if applicable), were fed into the ResNet model to predict food weight.

