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Abstract. This research aims to compare the efficiency of algorithms for detect-

ing and correcting typos in Thai, considering accuracy and processing time, es-

pecially the combination of word cutting methods and typo detection algorithms, 

to find the most suitable approach for developing Thai natural language pro-

cessing tools (Thai NLP). The data used in the experiment consisted of 3 Thai 

datasets: Thai Toxicity Tweet, Wisesight Sentiment, and ThaiSum, which are hu-

man-generated texts from both social media and news articles. The data was then 

prepared and word cutting was performed using the newmm, deepcut, and attacut 

processes. Then, typos were checked using the Levenshtein Distance, Hunspell, 

Peter Norvig, and Word2Vec algorithms. The experimental results showed that 

the combination of word cutting and typo detection algorithms between attacut 

and Peter Norvig gave the best results in terms of accuracy, while newmm and 

Hunspell gave the best results in terms of speed. Each method has its own ad-

vantages and disadvantages. Therefore, the choice of use should depend on the 

objectives, such as accuracy or speed. In addition, the research also presents a 

reusable experimental framework, which is useful for developers and researchers 

who want to evaluate or develop Thai typo detection systems in the future. 

Keywords: Benchmarking, Thai-Spelling, Algorithms. 

1 Introduction 

Because of the changes in consumer behavior, many businesses have to adjust them-

selves to match the needs of today’s consumers. One industry that has had to adapt a 

lot over the past few years is the book industry, where many companies had to close 

down because the online book market has been growing more and more. Especially 

novels, which have become very popular, causing people in the book industry to shift 

and invest in the online book market instead. Also, there are more and more investors 

coming into the online book business because it doesn’t cost much and the books can 

be sold all the time since they are displayed on online platforms. However, there might 

be mistakes in the quality or language of the works, especially novels that are translated 

from other languages, because they don’t go through proofreads. This can cause prob-

lems like spelling mistakes and other issues. 

Spell correction is used in many Natural Language Processing (NLP) applications 

such as machine translation, chatbots, sentiment analysis, and Optical Character Recog-

nition (OCR). However, Thai spell correction has extra challenges due to the language's 
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structure like no spaces between words, different ways to spell names, and informal 

writing styles. These issues make it necessary to combine word segmentation with spell 

correction. 

Wolf Garbe (2017) compared several spell correction algorithms for English, includ-

ing Norvig, BK-tree, LinSpell, and SymSpell. He tested how well they could fix 1,000 

misspelled words using a dictionary of 500,000 words, focusing on both accuracy and 

speed. 

  

 
Figure 1. Comparison of spell correction algorithms on 1,000-word test set 

 

For Thai, Anuruth Lertpiya (2020) studied spell correction using both Two-stage 

pipelines and End-to-End systems. The Two-stage approach had separate steps for de-

tecting and correcting mistakes using tools like Hunspell and PyThaiNLP. End-to-End 

models like Bi-GRU and Copy-augmented transformers were also tested with the 

UGWC dataset. Results showed that CRF-based detection worked fastest on CPUs, 

while neural models performed better on GPUs. 

 
  

Figure 2. Processing time comparison for Thai spell correction algorithms  

 

Even advanced models still struggle with Thai, especially when words are seg-

mented incorrectly or when dealing with unusual names. Word segmentation is im-

portant in Thai spell correction. 
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Choochart Haruechaiyasak (2008) compared dictionary-based and machine learn-

ing-based word segmentation methods. His research found that Conditional Random 

Field (CRF) gave the best results, beating other machine learning models and dictionary 

methods. 

From these problems, this study try to test different combinations of word segmen-

tation tools and spell correction methods for Thai. The goal is to see which combination 

gives the best results in terms of speed and accuracy. 

2 Literature Review 

2.1 Thai Word Segmentation (Tokenization) 

 Paisan Charoenpornsawat (1998) said that, because Thai writing does not use spaces 

or symbols to separate words, natural language processing tasks must first identify word 

boundaries before further processing. Tasks such as Thai-English translation, Thai 

speech synthesis, and spelling correction all require effective word segmentation. Thus, 

word segmentation is considered a major challenge in Thai NLP. There are two main 

problems in Thai word segmentation: 1. Ambiguity problem 2. Words not appear in 

dictionaries.Several concepts have been proposed to handle segmentation, such as: 

Longest matching - choosing the longest possible word from a dictionary and Diction-

ary similarity - selecting word sequences that best match the dictionary content. 

 Choochart Haruechaiyasak (2008) compared segmentation methods based on diction-

aries (using longest matching and maximal matching) against machine learning algo-

rithms including Naive Bayes, Decision Tree, Support Vector Machine (SVM), and 

Conditional Random Fields (CRF).  

 
Figure 3. Comparison table of segmentation results between dictionary-based and 

machine learning-based methods. 

2.2 Word Similarity (Distance) 

Joos Korstanje (2020) said that there are three types of word similarity measures 

that data scientists should be familiar with: 

2 .2 .1  Hamming Distance - Hamming Distance compares each character of two 

words based on their positions. For example, it compares the first character of the first 

word with the first character of the second word, and so on. This method is quick and 

simple, but it has a major limitation—it can be overly strict. For instance, the words 

"abcdefg" and "bcdefgh" are considered different by Hamming Distance, even though 

6 out of 7 characters are actually the same. 
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Figure 4. Hamming Distance calculation by comparing corresponding  

characters in each word. 

 

 2.2.2 Levenshtein Distance - measures the number of operations needed to 

transform one word into another. Each operation adds 1 to the total Levenshtein Dis-

tance. The types of operations counted in Levenshtein Distance are Inserting a character 

into a word, Deleting a character from a word, Replacing one character with another. 
Compared to Hamming Distance, Levenshtein Distance is more intuitive and flexible. 

For example, the words "abcdefg" and "bcdefgh" are considered very different under 

Hamming Distance, but under Levenshtein Distance, they are recognized as quite sim-

ilar. 

 
Figure 5. Levenshtein Distance calculation by counting the operations (insertion, de-

letion, substitution) needed to transform one word into another. 

 

2.3  Cosine Distance 

Cosine Distance differs from the previous two methods, as it measures the similarity 

of words based on documents rather than individual characters. This method is widely 

used in natural language processing (NLP).  It involves converting words into numeri-

cal representations and then creating imaginary vectors. 

Step 1: Collect unique words from the documents without keeping duplicate words, 

as shown in Figure 6. 
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Figure 6. Collecting unique words from all words in the document. 

 

Step 2: Create an imaginary word line by counting the words in each document, as 

shown in Figure 7. 

 
Figure 7. Word count in each document. 

 

Step 3: Calculate the similarity between each imaginary line using the Cosine Sim-

ilarity process. 

 
Figure 8. Cosine Similarity calculation formula. 

 

The calculation can be done using scikit learn, a ready-made library for the Python 

language, as shown in Figure 9. 
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+ 

Figure 9. Cosine Similarity calculation using Python's built-in library. 

By calculating from Figure 9, the results are: 

The similarity of words 1 and 2 is 0.816 

The similarity of words 1 and 3 is 0.369 

The similarity of words 2 and 3 is 0.452 

Therefore, words 1 and 2 are the most similar, 2 and 3 are the second most similar, 

and 1 and 3 are the least similar. 

 

2.4     Word2Vec  

lukkiddd (2018) said that Word2Vec is a model used to create word embeddings, 

developed by a team of researchers at Google led by Tomas Mikolov, which this model 

can perform better than the old method (Latent Semantic Analysis). Word2vec is a rep-

resentation of "words" in the form of "vectors", but it does not use one-hot encoding to 

create vector numbers like before. Word2vec uses the method of calculating the num-

bers of those words from the context around those words (the idea comes from the 

language model), as shown in Figure 10, and then plots those vectors as shown in Figure 

11. 

 
Figure 10. Calculating the number of a word from the context around it. 

 
Figure 11. Plotting the word vector. 
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By lukkiddd(2018) also said that because of bringing 2 vectors to dot together, it is 

finding the similarity value of 2  vectors or what is called PMI (point-wise mutual in-

formation), so it can find the similarity value of words (Word similarity) as shown in 

Figure 12. 

 
Figure 12. Calculation of word similarity. 

 

2.5     Named Entity Recognition 

Anuruth Lertpiya (2018) said that Name entity recognition (NER) is the main pro-

cess in data separation, detecting related words to determine which words in a sentence 

are proper nouns and what they are, for example, America is the name of a country, 

Somchai is a person's name, NBTC is a government agency. Normally, there will be 

various models to help in the calculation, such as Support Vector Machine, Naive 

Bayes, Maximum Entropy Classifier, Hidden Markov Models, Conditional Random 

Field and Decision Tree. 

 

2.6     Word Error & Word Variant Detection 

Anuruth Lertpiya (2018) The error checking from NECTEC’s BEST, NECTEC’s 

ORCHID and UGWC corpus was performed using N-gram method at 3, 5, 7, 9 and 11 

gram and compared with the checking from Dictionary-based method (DBM) with the 

performance indicators of Instance-Detection and Begin-End Detection. The compari-

son results are shown in Figure 13. 

 

 
Figure 13. Comparison table of Word Error & Word Variant Detection results. 

 

The best method for the UGWC corpus is 5  grams, while for other datasets, other 

methods performed better. Anuruth Lertpiya(2 0 1 8 )  reasoned that this may be due to 

the noise introduced into the other two datasets that is not similar to real human behav-

ior, resulting in different results. 
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2.7     Free Open Source Software Text Correctors 

2.7.1 Hunspell - Anuruth Lertpiya (2020) Hunspell is a dictionary-based spelling 

checker that is widely used by LibreOffice, OpenOffice.org, Mozilla Firefox 3, Mozilla 

Thunderbird and Google Chrome because it supports over 56 languages. 

2.7.2 PythaiNLP Spellchecking - Keng Surapong (2020) It is said that PythaiNLP 

Spellchecking is a library that checks spelling and spelling errors to see if the text or 

words the user has entered appear in the Dictionary or not. It may suggest similar words 

that are likely to be the correct word for the user to choose or even choose automati-

cally. By default, PyThaiNLP's Spellchecker will use Peter Norvig's algorithm to find 

a list of similar words from the Dictionary using the number of incorrect letters, 1 , 2 , 

... letters, combined with the probability from the frequency of that word appearing in 

the Corpus. By default, Thai National Corpus (TNC) will be used to check for incorrect 

words. 

2.7.3 Aspell - A spell checker program designed to replace Ispell, it can suggest 

possible words to replace the misspelled words, and can use more than one dictionary 

to check for spelling errors. 

 

2.8     English grammatical error correction (GEC) 

2.8.1 Bidirectional GRU (Bi-GRU) - GEC process using sequence to sequence 

neural based model for spell checking by working with sentence pieces (SentencePiece 

tokens) 

2.8.2 Copy-Augmented Transformer – Wei Zhao (2 0 1 9 )  It is said that Copy-

Augmented Transformer is a spelling checking process by copying the basic structure 

of the input word to be used as additional data in the Dictionary for spelling checking. 

The architecture is as shown in Figure 14. 

  
Figure 14. Architecture of the Copy-Augmented process. 

3 Data and Methodology 

3.1 Data  

The data selected and used in the experiment came from the selection of Thai 

language datasets for testing, which are the 3 datasets specified, as shown in Table 3.1. 
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Table 3.1 Data set 

Order Data set Details 

1 Thai Toxicity Tweet Thai Tweets labeled as toxic or not 

2 Wisesight Sentiment Social media messages labeled with 

sentiment (positive, neutral, negative) 

3 ThaiSum Thai news with summary 

 

3.2 Methodology 

During data preparation, five cleaning steps were applied to ensure the text was suit-

able for word segmentation and spelling correction. First, each entry was validated to 

confirm it was a string, avoiding errors from non-text data like numbers, lists, or null 

values. Second, Thai text normalization was applied to standardize complex characters 

(vowels, tones, diacritics) in Unicode. Third, URLs and web links were removed using 

regular expressions, as they added noise without linguistic value. Fourth, non-Thai 

characters—including English letters, numbers, and symbols—were filtered out to fo-

cus analysis on Thai content. Lastly, whitespace normalization was performed by re-

placing extra spaces, tabs, and newlines with a single space and trimming leading/trail-

ing spaces. These steps ensured that the text was clean, consistent, and ready for pro-

cessing. 

After the text data was cleaned and prepared in the Data Preparation step, word to-

kenization was performed to segment the Thai text into individual words. This study 

applied three different tokenization methods from the PyThaiNLP library: newmm, 

deepcut, and attacut. Each prepared text sample was passed through all three tokeniza-

tion methods separately. The outputs from each tokenizer were then used as input for 

the spelling correction phase. The use of multiple tokenizers allowed the study to eval-

uate how different word segmentation strategies impact the performance of spelling 

correction algorithms. 

Specifically: 

1. newmm tokenized the text using a dictionary-based longest matching approach. 

2. deepcut tokenized the text using a deep neural network (Bi-LSTM) model. 

3. attacut tokenized the text using a CRF-based sequence labeling model. 

The results from each tokenization method were recorded separately for perfor-

mance evaluation and comparison. 

After tokenization, the segmented text was processed using four spell-checking 

methods to detect and correct spelling errors. Each tokenization output—from newmm, 

deepcut, and attacut—was evaluated with all four methods, allowing analysis of differ-

ent method combinations. The spell-checkers were: 

Levenshtein Distance – calculates the minimal edits needed to match a valid diction-

ary word. 

Hunspell – a dictionary-based checker suggesting corrections using edit distance and 

affix rules. 

Peter Norvig’s Algorithm – generates possible edits and selects the most likely word 

based on frequency. 
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Word2Vec – uses vector similarity from a pre-trained model to suggest semantically 

similar words. 

Each tokenizer was paired with all four spell-checkers, enabling a thorough evalua-

tion of their correction performance across combinations. 

In this study, the evaluation metrics used on 500 random rows from spell correction 

result included time, accuracy, precision, recall, and F1-score, depending on the char-

acteristics of each dataset. Each metrics used the list of Thai vocabulary from the Royal 

Institute Dictionary, B.E. 2554 (2011 Edition) to evaluate result of each spell corrected 

word. 

For Thai Toxicity Tweet and Wisesight Sentiment, which contain user-generated 

content with naturally occurring spelling errors, Time with four metrics were calcu-

lated: Accuracy, Precision, Recall, F1-score. 

 
Where True Positive (TP) show a misspelled word was correctly identified as an 

error, False Positive (FP) show a correct word was identified as an error, False Negative 

(FN) show a misspelled word was not detected, True Negative (TN) show a correctly 

spelled word was correctly identified as not being an error. 

For the ThaiSum dataset, only time, accuracy and false positive rate (FPR) were 

computed. 

Because ThaiSum is composed of professionally edited news articles, spelling errors 

were minimal. Any correction made in this dataset was assumed to indicate a true or 

false positive. false positive rate (FPR) calculated as follows. 

 

1) Results 

In this research, the dataset was collected from Hugging face website. Hugging face 

is the platform where the machine learning community collaborates on models, da-

tasets, and applications. Therefore, dataset is just plain text that requires data prepro-

cessing method to preprocess and clean the text data before doing experiment. 

Data Collection This research used a Python script to collect datasets from the Hug-

ging Face website. The selected datasets contain Thai text and were generated by hu-

mans. Three datasets were collected: wisesight_sentiment (train split), which contains 

21,628 rows; thai_toxicity_tweet, which contains 3,300 rows; and thai_sum (test split), 

which contains 11,000 rows. Sample data from the collection are shown in Figure 15. 
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Figure 15. Sample data from data collection 

 

Data preprocessing From sample data in Figure 15. As it shown that some rows 

contain emoji, not Thai text and symbol. We have to performed data preprocessing and 

data cleaning. The step that we use is remove non-Thai characters and Thai symbols, 

remove space, remove duplicated character and standardizing exaggerated text. Sample 

data after preprocessing are shown in Figure 16. 

 
Figure 16. Sample data after preprocessing 

 

Word Tokenization We have performed three-word tokenization methods for each 

data set and collect result as shown in Table 3.2 First method is attacut which uses a 

neural sequence labeling model, where each character in the sentence is labeled to in-

dicate the start, inside, or end of a word. Second method is newmm which work by uses 

a maximum matching algorithm with a built-in Thai dictionary. Third method is 

deepcut which uses Bidirectional LSTM (Long Short-Term Memory) networks trained 

to learn word boundaries from character sequences.  

 

Table 3.2 The Performance of each word tokenization method 
dataset rows to-

kenizer 
words time (sec) 

toxic_tweet 3,300 attacut 49,888 23.22 

toxic_tweet 3,300 deepcut 49,548 121.08 

toxic_tweet 3,300 newmm 47,627 0.31 

thai_sum 11,000 attacut 483,827 141.52 

thai_sum 11,000 deepcut 482,482 702.66 

thai_sum 11,000 newmm 466,338 3.6 

wisesight_sentiment 21,628 attacut 472,140 230.22 

wisesight_sentiment 21,628 deepcut 470,494 1,064.70 

wisesight_sentiment 21,628 newmm 461,113 3.14 
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Discussion  
The result show that newmm word tokenization method is the fastest tokenize 

method and deepcut is the slowest tokenize method. But for amount of words that got 

tokenize attacut method seem to give the most amount of tokenize words. For the least 

amount of tokenize word is from newmm method. Attacut and deepcut use more time 

than newmm because these methods use deep learning to tokenize words but newmm 

is using dictionary mathching. 

Spell Correction In correction process, we do experiment by process every four 

spell correction methods - Levenshtein Distance, Hunspell, Peter Norvig, and 

Word2Vec in three datasets that we already preprocess and do word tokenization. Eval-

uation metrics that were used are spending time, accuracy, precision, recall and F1 score 

for wisesight_sentiment and thai toxicity tweet but for the ThaiSum dataset, only used 

accuracy and false positive rate (FPR). Because ThaiSum is composed of professionally 

edited news articles, spelling errors were minimal. Any correction made in this dataset 

was assumed to indicate a true or false positive. We random sampling 500 rows from 

each combination to calculate accuracy, precision, recall and F1 score. For result with-

out time shown in Table 3.3 and Table 3.4 

 

Table 3.3 The Performance of each word tokenization method on every word tokeni-

zation for wisesight_sentiment and thai toxicity tweet 
dataset tokenizer spell_check accuracy(%) precision recall f1 

thai_toxicity_tweet attacut Levenshtein Distance 83.55 0.7233 0.3067 0.4307 

thai_toxicity_tweet attacut Hunspell 85.78 0.4884 0.2008 0.2846 

thai_toxicity_tweet attacut Peter Norvig 85.08 0.5621 0.1894 0.2834 

thai_toxicity_tweet attacut Word2Vec 84.58 0.6711 0.2152 0.3259 

thai_toxicity_tweet deepcut Levenshtein Distance 81.55 0.7441 0.3376 0.4645 

thai_toxicity_tweet deepcut Hunspell 84.54 0.4436 0.1988 0.2746 

thai_toxicity_tweet deepcut Peter Norvig 84.81 0.5988 0.2253 0.3274 

thai_toxicity_tweet deepcut Word2Vec 83.92 0.696 0.244 0.3613 

thai_toxicity_tweet newmm Levenshtein Distance 81.79 0.2448 0.0955 0.1374 

thai_toxicity_tweet newmm Hunspell 85.00 0.4551 0.1558 0.2321 

thai_toxicity_tweet newmm Peter Norvig 80.07 0.1644 0.0914 0.1175 

thai_toxicity_tweet newmm Word2Vec 82.54 0.2762 0.0898 0.1355 

wisesight_sentiment attacut Levenshtein Distance 81.72 0.7167 0.2424 0.3622 

wisesight_sentiment attacut Hunspell 82.02 0.5207 0.1765 0.2636 

wisesight_sentiment attacut Peter Norvig 79.76 0.5135 0.1077 0.1781 

wisesight_sentiment attacut Word2Vec 79.58 0.6108 0.1351 0.2212 

wisesight_sentiment deepcut Levenshtein Distance 81.41 0.7322 0.2526 0.3756 

wisesight_sentiment deepcut Hunspell 80.98 0.5089 0.1676 0.2522 

wisesight_sentiment deepcut Peter Norvig 79.23 0.5019 0.112 0.1832 
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Table 3.3 The Performance of each word tokenization method on every word tokeni-

zation for wisesight_sentiment and thai toxicity tweet 
dataset tokenizer spell_check accuracy(%) precision recall f1 

wisesight_sentiment deepcut Word2Vec 79.07 0.6266 0.1379 0.2261 

wisesight_sentiment newmm Levenshtein Distance 78.90 0.304 0.0719 0.1163 

wisesight_sentiment newmm Hunspell 80.83 0.5017 0.1441 0.2239 

wisesight_sentiment newmm Peter Norvig 77.08 0.2069 0.0749 0.11 

wisesight_sentiment newmm Word2Vec 79.21 0.3124 0.0634 0.1054 

 

The spelling correction performance was evaluated using two datasets: Thai Toxicity 

Tweet and Wisesight Sentiment, across combinations of three tokenizers (attacut, 

deepcut, newmm) and four correction methods (Levenshtein Distance, Hunspell, Peter 

Norvig, and Word2Vec). Evaluation metrics included accuracy, precision, recall, and 

F1-score. For Thai Toxicity Tweet dataset, the best overall F1-score was achieved by 

deepcut + Levenshtein Distance with a score of 0.4645, followed closely by attacut + 

Levenshtein Distance (0.4307). Although Levenshtein Distance consistently performed 

well in F1 across tokenizers, it showed slightly lower accuracy in some cases. Peter 

Norvig and Hunspell had moderate performance, but their recall was lower, suggesting 

that they corrected fewer actual errors. Word 2Vec performed reasonably across the 

board, with attacut + Word2Vec yielding F1 = 0.3259 and relatively high precision = 

0.6711, meaning it made fewer incorrect corrections. For Wisesight Sentiment, similar 

trends were observed: deepcut + Levenshtein Distance achieved the highest F1-score = 

0.3756, with the highest precision = 0.7322 as well.attacut + Levenshtein Distance also 

performed strongly (F1 = 0.3622).Again, Word2Vec showed high precision (e.g., 

0.6266 with deepcut) but suffered from low recall, which impacted its F1-score.To-

kenizers like newmm, when combined with all spell checkers, yielded the lowest F1-

scores, especially with Peter Norvig (F1 = 0.11) and Word2Vec (F1 = 0.1054). 

 

Table 3 .4  The Performance of each word tokenization method on every word tokeni-

zation for thai sum 
dataset tokenizer spell_check words changes accuracy(%) FPR (%) 

thaisum attacut Levenshtein Distance 483,827 36,090 92.54 7.46% 

thaisum attacut Hunspell 347,281 18,405 94.70 5.30% 

thaisum attacut Peter Norvig 483,827 16,519 96.58 3.42% 

thaisum attacut Word2Vec 483,827 20,825 95.70 4.30% 

thaisum deepcut Levenshtein Distance 482,482 37,525 92.22 7.78% 

thaisum deepcut Hunspell 340,614 18,569 94.55 5.45% 

thaisum deepcut Peter Norvig 482,482 16,584 96.56 3.44% 

thaisum deepcut Word2Vec 482,482 21,137 95.62 4.38% 

thaisum newmm Levenshtein Distance 466,338 22,224 95.24 4.76% 

thaisum newmm Hunspell 453,875 20,618 95.46 4.54% 
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Table 3 .4  The Performance of each word tokenization method on every word tokeni-

zation for thai sum 
dataset tokenizer spell_check words changes accuracy(%) FPR (%) 

thaisum newmm Peter Norvig 466,338 31,506 93.25 6.75% 

thaisum newmm Word2Vec 466,338 18,951 95.94 4.06% 

 

From Table 3.4 As expected with professionally edited news articles, the Thai Sum 

dataset exhibited high overall accuracy across all tested combinations. However, since 

the text is presumed to contain few or no spelling errors, any detected correction is 

treated as a false positive. Therefore, False Positive Rate (FPR) become evaluation met-

ric for this dataset. The highest accuracy was achieved by attacut + Peter Norvig, with 

a score of 96.58% and the lowest accuracy was by newmm + Word2Vec (95.94%).  

Peter Norvig’s algorithm consistently produced the lowest FPR between each spell 

correction (as low as 3.42%), make it the most conservative and appropriate for clean 

data. Word2Vec also performed well, achieving accuracy above 95% and FPR values 

between 4.06% and 4.38% 

 

Table 3.5 The Performance in time for every combination 
dataset to-

kenizer 

spell_check time(min) 

thaisum attacut Levenshtein Distance     238.54  

thaisum attacut Hunspell       55.23  

thaisum attacut Peter Norvig  1,164.70  

thaisum attacut Word2Vec     507.92  

thaisum deepcut Levenshtein Distance     234.23  

thaisum deepcut Hunspell       56.33  

thaisum deepcut Peter Norvig  1,210.66  

thaisum deepcut Word2Vec     514.77  

thaisum newmm Levenshtein Distance     229.96  

thaisum newmm Hunspell       36.05  

thaisum newmm Peter Norvig     818.48  

thaisum newmm Word2Vec       75.58  

thai_toxicity_tweet attacut Levenshtein Distance       27.22  

thai_toxicity_tweet attacut Hunspell        6.72  

thai_toxicity_tweet attacut Peter Norvig       33.56  

thai_toxicity_tweet attacut Word2Vec       16.58  

thai_toxicity_tweet deepcut Levenshtein Distance       26.52  

thai_toxicity_tweet deepcut Hunspell        7.72  

thai_toxicity_tweet deepcut Peter Norvig       32.66  

thai_toxicity_tweet deepcut Word2Vec       16.70  

thai_toxicity_tweet newmm Levenshtein Distance       25.25  
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Table 3.5 The Performance in time for every combination 
dataset to-

kenizer 

spell_check time(min) 

thai_toxicity_tweet newmm Hunspell        4.30  

thai_toxicity_tweet newmm Peter Norvig       34.72  

thai_toxicity_tweet newmm Word2Vec        6.67  

wisesight_sentiment attacut Levenshtein Distance     297.09  

wisesight_sentiment attacut Hunspell       59.55  

wisesight_sentiment attacut Peter Norvig     566.30  

wisesight_sentiment attacut Word2Vec     310.17  

wisesight_sentiment deepcut Levenshtein Distance     274.32  

thai_toxicity_tweet newmm Peter Norvig       34.72  

thai_toxicity_tweet newmm Word2Vec        6.67  

wisesight_sentiment attacut Levenshtein Distance     297.09  

wisesight_sentiment attacut Hunspell       59.55  

wisesight_sentiment attacut Peter Norvig     566.30  

wisesight_sentiment attacut Word2Vec     310.17  

wisesight_sentiment deepcut Levenshtein Distance     274.32  

wisesight_sentiment deepcut Hunspell       68.40  

wisesight_sentiment deepcut Peter Norvig     616.71  

wisesight_sentiment deepcut Word2Vec     279.89  

wisesight_sentiment newmm Levenshtein Distance     254.48  

wisesight_sentiment newmm Hunspell       44.99  

wisesight_sentiment newmm Peter Norvig     440.26  

wisesight_sentiment newmm Word2Vec       51.93  

 

From Table 3 .5  Peter Norvig consistently had the longest processing times across 

all datasets and tokenizers. Due to its exhaustive candidate generation and probability-

based correction, Peter Norvig took more than 400–1,200 minutes depending on dataset 

size. This method is not suitable for large datasets when fast turnaround is needed. 

Word2Vec showed moderate processing times, faster than Peter Norvig but still sub-

stantial, especially on large datasets. ranged from 50–500 minutes, depending on da-

taset and tokenizer. Word2Vec’s semantic model requires vector operations, making it 

heavier than simple dictionary-based checks. Levenshtein Distance had medium speed 

performance. It was consistently faster than Word2Vec and Norvig but slower than 

Hunspell, ranging from 25 minutes on small datasets to 230 minutes on large ones. 

Hunspell was the fastest spell correction method overall. Across all datasets, Hunspell 

consistently finished under 70 minutes, and sometimes under 10 minutes on smaller 

datasets. Spell correction method based on dictionary seem to work quicker than other 

method. 
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4 Objective reviews 
This research was carried out with the aim of benchmark the performance of combi-

nations from Thai spell correction algorithms with word tokenization algorithms. 

1. To evaluate accuracy and spending time of each Thai spell correction methods. 

Four spell correction was used in Human generated datasets. Accuracy, precision, 

recall, F1-score, and processing time were used to evaluate each method. 

2. To analyze effect of word tokenization algorithm on spell correction algorithms. 

Three-word tokenization methods was used in Human generated datasets. Result 

showed that word tokenization method with more accurate segmentation seem to 

have more accuracy in spell correction. 

3. To find the best combination of word tokenization and spell correction for Thai 

language. 

The best combination on accuracy was attacut with Peter Norvig. But for speed, 

newmm with Hunspell can do better. 

4. To develop an experimental baseline for future improvements in Thai NLP. 

In This study we received a reusable framework contain preprocessing steps, to-

kenization, correction pipelines, and evaluation metrics. 

 

References 

1. Garbe, W. (2017). SymSpell vs. BK-tree: 100x faster fuzzy string search & spell  

2. checking. Towards Data Science. https://towardsdatascience.com/symspell-vs-bk-tree-

100x-faster-fuzzy-string-search-spell-checking-c4f10d80a078 

3. Haruechaiyasak, C. (2008). A comparative study on Thai word segmentation  

4. approaches. 

5. Korstanje, J. (2020). 3 text distances that every data scientist should know. Towards  

6. Data Science. https://towardsdatascience.com/3-text-distances-that-every-data-scientist-

should-know-7fcdf850e510 

7. Lertpiya, A. (2018). A preliminary study on fundamental Thai NLP tasks for user- 

8. generated web content. 

9. Lertpiya, A. (2020). Thai spelling correction and word normalization on social text  

10. using a two-stage pipeline with neural contextual attention. 

11. Lukkiddd. (2018). Word Embedding และ Word2Vec คืออะไร. https://lukkiddd.com/word- 

12. embedding-และ-word2vec-คืออะไร-e60bdf6d78d3 

13. Surapong, K. (2020). Spell Checker คืออะไร Spell Checker ภาษาไทย ตรวจการสะกดค าภาษาไทย  
14. ดว้ย PyThaiNLP โปรแกรมตรวจค าผิดภาษาไทย ดว้ย Python – PyThaiNLP ep.3. Bualabs. 

https://www.bualabs.com/archives/3895/what-is-spell-checker-thai-language-spell-

checker-pythainlp-spelling-correction-python-pythainlp-ep-3/ 

15. Zhao, W., Wang, L., Shen, K., Jia, R., & Liu, J. (2019). Improving grammatical error  

16. correction via pre-training a copy-augmented architecture with unlabeled data. 

17. Phaisan Charoenprasawat. (1998). Thai word segmentation using characteristics. 


