
Data Science and Engineering (DSE) Record, Volume 6, issue 1.

Food Consumption Measurement Using Computer Vison:

A Case Study on Thai Cuisine

Pattadon Thepkan 1 and Jakarin Chawachat 2

1 Master’s Degree Program in Data Science, Chiang Mai University, Chiang Mai, Thailand
2 Department of Computer Science, Faculty of Science, Chiang Mai University, Chiang Mai,

Thailand
pattadon_th@cmu.ac.th

Abstract. This study aims to develop a system for estimating the portion size and

energy of Thai food from images using deep learning techniques. The proposed

system supports dietitians and health-conscious individuals by enabling

automated and accurate food intake assessment. The system consists of two main

components: (1) object detection using YOLOv11 to simultaneously identify

food items and reference coins in an image, and (2) food weight estimation using

ResNet101, with coin objects serving as physical references for real-world

scaling. The estimated food weight is then used to calculate nutritional values

based on a Thai food database. Experimental results demonstrate that annotating

object boundaries with Smart Polygon significantly improves model accuracy

and stability compared to the traditional Bounding Box method, yielding higher

Precision, Recall, F1-score, and mAP. Among the tested models, ResNet101 with

coin references achieved the best weight estimation performance, with a Mean

Absolute Error (MAE) of 71.12 grams and Root Mean Squared Error (RMSE) of

91.56 grams. This system is suitable for real-world applications in hospitals,

restaurants, and personal nutrition tracking.

Keywords: Food Estimation, Object Detection, Nutrient Tracking, Thai Cuisine

1 Introduction

Malnutrition, particularly among elderly patients, is a persistent concern in hospital

care. To access food intake, nutritionists traditionally rely on a precise method of

weighing food portions before and after a meal. While this approach is highly accurate,

it is time-consuming and impractical for continuous use, especially in high volume

healthcare settings where staff resources are limited. Computer vision-based systems

offer a promising solution by enabling automated food intake monitoring through

image analysis. Previous study by Ruenin et al. (2020) [1] introduced machine learning

systems designed to estimate the amount and calories of food consumed by hospital

patients. These systems used object detection and regression techniques to process

images of meals served in segmented trays. While effective in controlled settings, their

use is limited when applied to general dining scenarios where dish presentation varies

widely. This study proposes a solution that addresses these challenges by combining

object detection with real-world scaling. By using YOLOv11 to detect food and coins,

and ResNet101 to estimate food weight, the system calculates nutritional intake from

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

340

images in an automated and scalable way. This approach aims to support dietary

monitoring not only in hospitals but also in real-world environments, where food is

served in informal and varied formats.

2 Literature Review

This research aims to develop a food image analysis system capable of automatically

classifying food types and estimating their weights for calculating energy and nutrients.

Therefore, this chapter reviews the related literature in two main areas: (1) food

classification and (2) food weight estimation, presented chronologically. It also

explains the techniques, advantages, limitations, and research gaps that inform the

approach proposed in this study.

2.1 Food Detection

Zhang, H. et al. (2015) [2] developed Snap-n-Eat, one of the first applications to use

Convolutional Neural Networks (CNNs) for classifying food types from mobile phone

images. A key feature of the system was its end-to-end capability, s handling both food

classification and energy estimation from a single image.

Myers, A.et al. (2015) [6] developed Im2Calories, which combined CNNs with the

USDA food database to present results in terms of energy and nutritional values. The

system was functional on mobile devices and served as one of the foundations for the

development of automatic food diaries.

Ege, T., & Yanai, K. (2019) [3] proposed a Multi-Task Learning approach that

integrates t detection with energy estimation within a single network. This method

reduces processing time and system complexity

Tan, M., et al. (2020) [4] introduced EfficientDet, which, although not specifically

designed for food-related tasks, has been adapted for food image analysis to reduce

model size while maintaining high accuracy—making it suitable for resource-

constrained devices.

Nguyen, T. et al. (2024) [5] presented FoodMask, an instance segmentation-based

approach to separate individual food items on a single plate. This method addresses the

challenge of overlapping and mixed dishes such as Thai food, where traditional

bounding boxes struggle to segment components accurately.

2.2 Food Weight Estimation

He, Y. et al. (2013) [7] proposed a method for estimating food weight based on the

segmented area of the food and predefined density top-down (vertical) angle.

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

341

Wang, Z. et al. (2018) [8] developed a deep learning-based system to estimate food

volume from a single image without requiring a depth camera. This enabled usage on

standard consumer devices, although it still required consistent camera angles and plain

backgrounds for accuracy.

Ye, H. et al. (2019) [9] introduced a concept of cross-domain learning by training

models on both real and synthetic images. This allowed models to generalize to new

image domains without needing retraining, although performance degraded in cases

with overlapping foods or cluttered scenes.

Garcia et al. (2023) [10] proposed a system that uses physical reference objects, such

as coins or spoons with known dimensions, to calculate the image scale. This scale was

then used to convert food bounding boxes into real-world dimensions and estimate

weight. The study highlighted the system’s simplicity and practical accuracy, making

it particularly suitable for use in restaurants and home environments.

Fang, C. et al. (2024) [11] developed a method for estimating food volume from 2D

images using 3D point cloud reconstruction. This approach converts flat images into

depth-aware structures, allowing for more accurate weight estimation without the need

for specialized cameras. However, it requires complex training data and highly accurate

segmentation to separate food from background.

3 Data and Methodology

Figure 1. Overall Workflow

The overall workflow of the proposed system is illustrated in Figure 1, which

consists of four sequential components: data preparation, object detection, cropping and

weight estimation, and nutrient calculation.

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

342

3.1 Data Preparation

This section describes the steps involved in preparing the dataset used in this study.

It includes data collection, data labeling with different annotation strategies, and data

preprocessing and augmentation to improve the model’s performance and robustness.

1) Data Collection: The dataset used in this study consists of top-down view

photographs, each containing only two types of objects.

• Food: chicken rice, crispy pork rice, fried rice, pad thai, and pad see ew

• Coins: 1 baht, 2 baht, 5 baht, and 10 baht coins

 Figure 2. Example of Data Collection

2) Data Labeling in Roboflow: To support comparison between different levels

annotation precision, the dataset was prepared in two versions.

• Food items were annotated using Bounding Box, while coins were

annotated using Smart Polygon.

• Both food items and coins were annotated using Smart Polygon

 Figure 3a. Bounding Box Annotation Figure 3b. Smart Polygon Annotation

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

343

3) Data Preprocessing and Augmentation: All images were preprocessed through

resizing and normalization to ensure consistency across the dataset. Data

augmentation was applied using Roboflow to enhance model robustness under

real-world conditions. Augmentations included random noise, brightness and

contrast adjustments, and slight geometric transformations (e.g., shear, blur).

Coins and food items were augmented differently to reflect their distinct visual

properties and roles in the detection process.

3.2 Object Detection Model

This section outlines the procedures used for training and evaluating the YOLOv11

model in this study. It details the model selection, environment setup, training

configurations, and performance monitoring to ensure robust object detection results.

1) Model Selection: YOLOv11 was chosen for object detection due to its high

accuracy and strong performance in multi-class object identification.

2) Environment Setup: Training was performed on a Tesla T4 GPU (15GB

VRAM) with CUDA 12.4 and driver version 550.54.15. Libraries used include

ultralytics, supervision, and Google Drive mount for data management.

3) Training Configuration: The model was initialized with yolo11s.pt, using a

batch size of 32 for 50 epochs. Input images were resized to 640×640 pixels.

Mixed precision (AMP) and caching were enabled to optimize training. Model

checkpoints were saved every 10 epochs.

4) Evaluation and Fine-Tuning: Loss, accuracy, and mean Average Precision

(mAP) were monitored throughout training. Checkpoints were used to track

performance and adjust hyperparameters as needed.

3.3 Cropping and Weight Estimation

This section describes the data preprocessing, experimental setup, and methods used
to estimate food weight with ResNet models. It includes the steps of cropping detected

objects, computing scaling factors for coin-referenced predictions, and feeding the

processed data into ResNet variants to generate weight predictions.

1) Image Preprocessing and Cropping: To prepare inputs for the ResNet model,

object coordinates were exported from Roboflow in .csv format, containing file

names, object classes, and bounding box coordinates. The process involved

reading the .csv with Pandas, separating food and coin entries, and cropping the

objects from original images using OpenCV. Cropped images were resized to

224×224 pixels while maintaining aspect ratio, applying black padding where

necessary. Resulting images were stored in separate folders for food and coin.

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

344

2) Experiment Setup:

Two experimental conditions were tested:

• With coin reference (using coin-based scaling factor)

• Without coin reference (baseline)

 Each condition was evaluated using three ResNet variants:

• ResNet50

• ResNet101

• ResNet152

3) Coin-Based Scaling: The real-world width of the coin was used as a reference.

The scaling factor was computed by dividing the known coin diameter (e.g.,

25.60 mm for a 10-baht coin) by its bounding box pixel width

4) Model Input: Cropped food images, along with the scaling factor (if applicable),

were fed into the ResNet model to predict food weight

3.4 Nutrient Calculation

This section details how the estimated food weight is used to calculate nutrient

content. Using the Thai Food Composition Database, the system retrieves the nutrient

values for each food type and calculates the final nutrient amounts based on the

estimated weight.

1) Load the nutrient database file (.json format).

2) Match the predicted food label to its corresponding entry in the database.

3) Apply the formula:

𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 = (
𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑝𝑒𝑟 100𝑔

100
) × 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔)

According to the Thai Food Composition Database (Mahidol University, 2018),

nutritional values for each food item are standardized per 100 grams of edible portion

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

345

4 Results and Evaluation

This section presents the experimental results and evaluation of the models developed

in accordance with the methodology described in Section 3. The evaluation is divided

into two parts

1) Training and Validation Evaluation: Comparison of model performance during

training and validation, including object detection (YOLOv11) and food weight

estimation (ResNet50, ResNet101, ResNet152). The best-performing model is

selected for testing on unseen data.

2) Unseen Test Evaluation: The selected models are tested on unseen data to assess

generalization performance. This includes a comparison between models using

images with and without physical reference objects (coins), to validate the

effectiveness of the proposed approach.

4.1 Training and Validation Evaluation

4.1.1 Evaluation of YOLOv11 for Object Detection

To compare the effectiveness of annotation strategies, two YOLOv11 models were

trained under identical configurations using either Bounding Box or Smart Polygon

labels.

Both models were evaluated using F1-Confidence curves, Precision-Recall curves,

and mAP@0.5, focusing on both food items and coins.

1) F1-Confidence Curve Analysis:

To compare the effectiveness of annotation strategies, two YOLOv11 models

were trained under identical configurations using either Bounding Box or Smart

Polygon labels. As shown in Figures 4a and 4b, the Smart Polygon model

achieved a peak F1 score of 0.92 at a confidence threshold of 0.255, whereas

the Bounding Box model only reached a peak F1 score of 0.64 at 0.141.

Figure 4a. F1-Confidence curve (Bounding Box)

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

346

Figure 4b. F1-Confidence curve (Smart Polygon)

2) Precision-Recall (PR) Curve Analysis:

The PR curves in Figures 5a and 5b further confirmed the superior performance

of the Smart Polygon model, which reached a mAP@0.5 of 0.915, compared to

only 0.616 for the Bounding Box model. This difference was particularly

notable in detecting complex food categories such as pad_see_ew and

fried_rice.

Fig. 5a. Precision-Recall curve (Bounding Box)

Fig. 5b. Precision-Recall curve (Smart Polygon)

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

347

Across both evaluation metrics, Smart Polygon annotation consistently improved

model performance, especially for foods with irregular shapes, without compromising

coin detection. These results highlight the importance of fine-grained annotation when

applying object detection in real-world food analysis scenarios.

4.1.2 Evaluation of ResNet for Food Weight Estimation

Once food items were detected and isolated using YOLOv11, food weight estimation

was conducted using ResNet-based regression models. ResNet (Residual Network)

architectures are well established in computer vision tasks due to their ability to learn

hierarchical features in complex image data. This study compared three variants:

ResNet50, ResNet101, and ResNet152. Each was tested under two conditions: with

coin reference, using a coin’s known diameter to compute a scaling factor (mm/pixel),

and without coin reference, used as a baseline with no physical size input. The goal was

to evaluate both prediction accuracy and model stability across different network

depths. Models were assessed using training and validation loss curves.

Fig. 6a. Training and validation loss – ResNet50 (with coin)

Fig. 6b. Training and validation loss – ResNet101 (with coin)

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

348

Fig. 6c. Training and validation loss – ResNet152 (with coin)

The training and validation loss curves in Figures 6a, 6b, and 6c show the

performance of the three ResNet models with coin reference. All models converged

well, but ResNet101 in Figure 6b exhibited the most stable and balanced loss trajectory,

indicating consistent learning and minimal overfitting. In contrast, ResNet152 in Figure

6c, despite its deeper architecture, showed higher variance in the validation loss,

suggesting sensitivity to noise or potential overfitting. Overall, these curves

demonstrate that ResNet101 offered the best trade-off between accuracy and stability

during training.

4.2 Testing on Unseen Data

 This section evaluates the performance of the proposed system on an unseen dataset

to assess its generalization ability. The dataset consists of 100 images that were not

used during training or validation, providing a direct and independent test of the

system’s performance. It includes evaluations of the selected YOLOv11 model for food

and coin detection, as well as the ResNet model for weight estimation, examining how

effectively they perform in realistic, previously unseen scenarios.

4.2.1 Testing the Selected YOLO Model on Unseen Data

 To evaluate the generalization capability of the YOLOv11 model trained with Smart

Polygon annotations, the model was tested on an unseen test set that was not used

during training or validation.

 The evaluation focused on both food classification and coin detection, using

standard performance metrics: Accuracy, Precision, Recall, and F1-score. These

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

349

metrics assess the model’s ability to correctly classify objects and avoid false

predictions.

The definitions of the metrics are based on the following:

• TP (True Positive): Correctly predicted as the target class

• TN (True Negative): Correctly predicted as not the target class

• FP (False Positive): Incorrectly predicted as the target class

• FN (False Negative): Failed to predict the target class

The metrics are calculated as:

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

• 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

The overall classification performance of the YOLOv11 model, as shown in Table

1, indicates a high level of accuracy in detecting food items but comparatively lower

performance for coin detection. Specifically, food classification achieved an accuracy

of 86.00%, an F1-score of 0.896, a precision of 0.867, and a recall of 0.862. In contrast,

coin classification only reached an accuracy of 66.00%, with an F1-score of 0.680,

precision of 0.688, and recall of 0.678, reflecting the greater challenge in detecting

coins due to their small size and reflective surfaces.

Table 1. Overall Classification Performance

Metric
Food

Classification

Coin

Classification

Accuracy 86.00 % 66.00 %

F1-score 0.896 0.680

Precision 0.867 0.688

Recall 0.862 0.678

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

350

 As shown in Table 2, the precision, recall, F1-score, and support for each food

category in the test dataset highlight the model’s performance. Crispy pork rice

achieved the highest classification performance, with both precision and recall at 1.00,

demonstrating excellent model accuracy for this dish. In contrast, fried rice had the

lowest recall at 0.60, likely due to visual similarities with dishes like chicken rice and

crispy pork rice. Despite these occasional confusions, most dishes had F1-scores above

0.85, indicating strong overall robustness of the model in distinguishing between the

five food categories.

Table 2. Per-Class Performance (Food Categories)

Food Type Precision Recall F1-score Support

chicken_rice

0.769

1.000

0.870

20

crispy_pork_rice

0.909

1.000

0.952

20

fried_rice

1.000

0.600

0.750

20

pad_see_ew

1.000

0.737

0.848

20

pad_thai

0.800 1.000 0.889 20

 Coins serve as critical reference objects for estimating food weight via image

scaling, and their classification performance is detailed in Table 3. The 10-baht coin

was classified with perfect precision, recall, and F1-score of 1.00, indicating the model

could consistently recognize it with high confidence. In contrast, the 1-baht and 5-baht

coins had lower performance, particularly the 5-baht coin, which showed a recall of

only 0.40, likely due to its small size and reflective surfaces. The 2-baht coin performed

moderately well, achieving an F1-score of approximately 0.75.

Table 3. Per-Class Performance (Coin Categories)

Food Type Precision Recall F1-score Support

1_thb_coin

0.490 0.610 0.530 28

2_thb_coin

0.790 0.750 0.750 27

5_thb_coin

0.480 0.400 0.440 25

10_thb_coin

1.000 1.000 1.000 20

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

351

4.2.2 Testing of the Selected Resnet Model on Unseen Data

To assess the effectiveness of the selected ResNet model, this study evaluated

ResNet101 (with coin reference) on an unseen test set. The model was tested on 100

food images (20 images per food type) using standard performance metrics: Mean

Absolute Error (MAE), Root Mean Squared Error (RMSE), and a custom-defined

Accuracy metric. The formulas are as follows:

• Mean Absolute Error (MAE)

Measures the average magnitude of errors between predicted and actual

values:

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − ŷ𝑖|

𝑛

𝑖=1

• Root Mean Squared Error (RMSE)

Gives higher weight to larger errors by squaring the differences:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=1

• Accuracy (%), as defined in this study

The percentage of samples whose prediction error falls within ±MAE

of the true value:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 |𝑦𝑖 − ŷ𝑖| ≤ 𝑀𝐴𝐸

𝑛
) × 100

To determine the benefit of using coin references in the images, the study compared

the performance of ResNet101 with coin and ResNet101 without coin using the same

test dataset. The dataset included 5 food categories with a total of 100 images. The

average food weight in the test set was 209.87 grams, which closely matched the

training set average of 208.14 grams, ensuring data consistency across sets.

The comparison in Table 4 shows that including coin references improved estimation

accuracy. The use of physical scale (coin diameter) enhanced the model’s ability to map

pixel area to real-world food weight, particularly for visually ambiguous or irregular

portions. Specifically, incorporating the coin reference reduced the Mean Absolute

Error (MAE) by approximately 5 grams and the Root Mean Squared Error (RMSE) by

around 6 grams. The model with the coin reference also achieved a notably higher

accuracy of 56.00%, compared to only 48.00% without the coin, highlighting its

improved ability to infer physical scale from pixel dimensions.

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

352

Table 4. Comparison of Resnet101 with and without Coin Reference

Model MAE (g) RMSE (g) Accuracy (%)

ResNet101

(With Coin)

71.12 91.56 56.00

ResNet101

(Without Coin)

76.38 97.35 48.00

 To further analyze model error patterns, the test set was divided into three weight

ranges:

1) Less than 150 grams

2) Between 150–250 grams

3) Greater than 250 grams

This stratification enabled evaluation across different distributions.

As shown in Table 5, the ResNet101 model with coin reference demonstrated

varying performance across different food weight ranges. In the <150 g category, the

model overestimated the actual average weight of 102.97 g with a predicted average of

181.11 g, resulting in a prediction bias of +78.15 g, an MAE of 78.15 g, and an accuracy

of 51.72%. For the 150–250 g range, the model achieved its best performance, showing

a small negative bias of -2.02 g, an MAE of 28.38 g, and the highest accuracy of

60.53%. In the >250 g range, the model underestimated the true average weight of

316.30 g by 113.60 g, with an MAE of 114.17 g and an accuracy of 54.55%. These

findings highlight the model’s overall robustness in the mid-range weights while

pointing to areas for improvement in handling smaller and larger portion sizes.

 Table 5. Performance of ResNet101(with coin) across Different Weight Ranges

Weight

Range

Sample

Size

True

Avg. (g)

Predicted

Avg. (g)

MAE

(g)

Prediction

Bias (g)

Accuracy

(%)

< 150 g

29 102.97 181.11 78.15

+78.15

51.72

150 – 250 g

38 199.03 197.01 28.38 -2.02 60.53

> 250 g

33 316.30 202.60 114.17 -113.60 54.55

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

353

 As detailed in Table 6, the accuracy and Mean Absolute Error (MAE) of the

ResNet101 model with coin reference varied across different food types. For chicken

rice, the model predicted an average weight of 181.11 g, slightly above the true average

of 175.40 g, with a prediction bias of +0.35 g and an accuracy of 60.00%. Crispy pork

rice showed a slightly larger underestimation of 19.69 g, resulting in an MAE of 60.06 g

and an accuracy of 55.00%. Fried rice performed best, achieving the highest accuracy

of 65.00% and a low bias of +4.09 g. In contrast, pad thai and pad see ew had larger

underestimations of around 31 g each, with accuracies of 55.00% and MAEs of over

60 g. These results suggest that the model’s predictive accuracy varies across different

dishes, reflecting the challenges of estimating weights for visually similar or complex

meals.

Table 6. Accuracy and MAE of ResNet101(with coin) by Food Type

Food Type
Sample

Size

True

Avg. (g)

Predicted

Avg. (g)

MAE

(g)

Prediction

Bias (g)

Accuracy

(%)

Chicken_rice

20 175.40 181.11 28.94

+0.35

60.00

Crispy_pork_rice

20 199.85 197.01 60.06 -19.69 55.00

Fried_rice

20 203.15 202.60 35.15 +4.09 65.00

Pad_thai

20 205.90 174.07 64.46 -31.83 55.00

Pad_see_ew

20 265.05 234.02 65.24 -31.03 55.00

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

354

5 Conclusion and Discussion

5.1 Conclusion

 This research aimed to develop a food image analysis system based on deep learning

for object detection, food classification, and food weight estimation from photographs.

The system consists of two core modules: the YOLOv11 model for object detection

and the ResNet101 model for estimating food weight.

 The study compared two annotation techniques-Normal Box and Smart Polygon.

Results indicated that Smart Polygon annotations significantly improved YOLOv11's

performance across key metrics such as Precision, Recall, F1-score, and mAP.

Furthermore, the loss curve of the Smart Polygon-trained model was smoother and

more stable, reflecting efficient learning and reduced risk of overfitting.

 For weight estimation, ResNet101 (with coin) provided the best trade-off between

accuracy and stability, achieving a Mean Absolute Error (MAE) of 71.12 grams and a

Root Mean Squared Error (RMSE) of 91.56 grams on the unseen test set.

 Key findings from evaluations on unseen data include: YOLOv11 using Smart

Polygon annotation achieved average Precision, Recall, and F1-score exceeding 0.96.

Food classification reached an Accuracy of 86% and a Macro F1-score of 0.86. Dishes

such as Crispy Pork Rice and Pad Thai were classified with high accuracy, while Fried

Rice and Pad See Ew were more error prone. Coin classification achieved 66%

Accuracy and a Macro F1-score of 0.68, with the 10-baht coin attaining perfect

Precision and Recall.

 ResNet101 with coin outperformed its version without coin on unseen data. The

model with coin reduced MAE by approximately 5 grams and RMSE by 6 grams, and

improved accuracy from 48.00% to 56.00%, confirming the benefit of using a coin as

a reference object to aid in interpreting physical scale.

 An error distribution analysis by weight range showed optimal model performance

for mid-range meals (150-250 grams), consistent with the training data average. The

model tended to overestimate lighter meals (<150g) and underestimate heavier meals

(>250g), demonstrating a regression toward the mean behavior. When grouped by food

type, dishes with visually distinct and compact features such as Chicken Rice and Fried

Rice yielded lower MAE and higher accuracy. Conversely, dispersed dishes like Pad

Thai and Pad See Ew exhibited underestimation.

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

355

5.2 Discussion

 The use of Smart Polygon annotations significantly improved YOLOv11

performance, especially for irregularly shaped objects like food. By eliminating

excess background, the model could better learn specific object features, thus

enhancing Precision, Recall, and mAP compared to Normal Box. Among reference

objects, the 10-baht coin was identified as the most effective due to its consistent

classification accuracy, while other coins, particularly the 1-baht and 5-baht,

exhibited higher error rates. Therefore, the 10-baht coin is recommended as the

standard reference object for accurate scaling in weight estimation. Regarding food

classification, Chicken Rice, Crispy Pork Rice, and Pad Thai demonstrated high

classification accuracy, whereas Fried Rice and Pad See Ew encountered greater

classification challenges due to similar visual characteristics. The model showed

directional estimation bias, with after-meal images, especially those under 130

grams, being significantly overestimated, likely due to their underrepresentation in

the training set. Conversely, full-plate meals exceeding 250 grams were

consistently underestimated, reflecting a regression toward the mean. Training

environment constraints also played a role, as images were taken with limited dish

and background diversity, such as plain white dishes or repetitive designs, causing

background bias when the model faced unfamiliar environments. Furthermore, the

limited size and diversity of the test set relative to real-world scenarios may have

introduced high variance in metrics like Accuracy, Precision, and F1-score,

ultimately affecting the model’s generalizability.

5.3 Recommendations for Future Work

 Future work should increase the number of after-meal images featuring 10-50% food

remnants on the plate to better capture real-world scenarios and reduce overestimation

biases. Additionally, implementing prediction correction logic using pixel area

thresholds could further improve weight estimation accuracy. For example, using a

correction formula as shown:

𝒘𝒆𝒊𝒈𝒉𝒕 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 = 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒘𝒆𝒊𝒈𝒉𝒕 × 𝜶 + 𝜷

If α = 0.8 and β = −10g, the model adjusts predicted weight by reducing it 20% and

subtracting an additional 10 grams.

 This approach is particularly beneficial when the detected food area drops

significantly, helping mitigate the tendency of the model to overestimate weight in

these scenarios.

Data Science and Engineering (DSE) Record, Volume 6, issue 1.

356

References

1. Ruenin, P., Bootkrajang, J., & Chawachat, J. (2020). A System to Estimate the Amount and

Calories of Food that Elderly People in the Hospital Consume. In Proceedings of the 11th

International Conference on Advances in Information Technology (IAIT '20), Article No. 8,

1–7.

2. Zhang, H., Li, J., & Wang, Y. (2015). Snap-n-Eat: A Mobile Application for Food Image

Classification and Calorie Estimation. In Proceedings of the ACM International Conference

on Multimedia, 1002-1008.

3. Ege, T., & Yanai, K. (2019). Simultaneous Estimation of Dish Locations and Calories with

Multi-Task Learning.IEICE Transactions on Information and Systems, E102-D(7), 1240–

1246.

4. Tan, M., Pang, R., & Le, Q. V. (2020). EfficientDet: Scalable and Efficient Object Detection.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 10781–10790.

5. Nguyen, T. T., Tran, H. N., & Do, T. M. (2024). FoodMask: Instance Segmentation of Food

in Images. Sensors, 24(3), 841.

6. Myers, A., Johnston, N., Rathod, V., et al. (2015). Im2Calories: Towards an Automated

Mobile Vision Food Diary. In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), 1233–1241.
7. He, Y., Xu, C., Khanna, N., Boushey, C. J., & Delp, E. J. (2013). Food Image Analysis:

Segmentation, Identification, and Weight Estimation. In Proceedings of the IEEE

International Conference on Multimedia and Expo (ICME), 1–6.

8. Wang, Z., Liu, X., & Li, Y. (2018). Food Volume Estimation Using Deep Learning from

Single Images. IEEE Access, 6, 12345–12352.

9. Ye, H., Xu, C., & Delp, E. (2019). Towards Learning Food Portion From Monocular Images

With Cross-Domain Feature Adaptation. arXiv preprint arXiv:2103.07562.

10. Garcia, J., Jones, A., & Smith, B. (2023). Automated Food Weight and Content Estimation

Using Computer Vision and Artificial Intelligence. Sensors, 23(15), 7660.
11. Fang, C., Lin, S., & Hsu, T. (2024). MFP3D: Monocular Food Portion Estimation

Leveraging 3D Point Clouds. arXiv preprint arXiv:2411.1049

	1) Model Selection: YOLOv11 was chosen for object detection due to its high accuracy and strong performance in multi-class object identification.
	2) Environment Setup: Training was performed on a Tesla T4 GPU (15GB VRAM) with CUDA 12.4 and driver version 550.54.15. Libraries used include ultralytics, supervision, and Google Drive mount for data management.
	3) Training Configuration: The model was initialized with yolo11s.pt, using a batch size of 32 for 50 epochs. Input images were resized to 640×640 pixels. Mixed precision (AMP) and caching were enabled to optimize training. Model checkpoints were save...
	4) Evaluation and Fine-Tuning: Loss, accuracy, and mean Average Precision (mAP) were monitored throughout training. Checkpoints were used to track performance and adjust hyperparameters as needed.
	2) Experiment Setup:
	3) Coin-Based Scaling: The real-world width of the coin was used as a reference. The scaling factor was computed by dividing the known coin diameter (e.g., 25.60 mm for a 10-baht coin) by its bounding box pixel width
	4) Model Input: Cropped food images, along with the scaling factor (if applicable), were fed into the ResNet model to predict food weight

