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Abstract. This independent study presents a system for object detection and 

localization using aerial imagery captured by drones in search and rescue 

operations. Generally, higher drone altitude gives greater area coverage, but 

reduces detection accuracy. While a lower altitude improves accuracy, but 

requires more search time. Lacking guidance on optimal altitude information, this 

study explores the various detection performances at different flight altitudes to 

enhance operational efficiency. Since altitude impacts both image quality and 

detection accuracy, image resolution is also examined as a key factor in system 

performance. The study evaluates the YOLOv11 algorithm for detection in aerial 

images, using clothing as a human proxy to address ethical and data collection 

constraints. Performance was assessed using Mean Average Precision, Precision, 

Recall, and Time along with, derived metrics like Efficiency Score and Missing 

Rate. The geolocation deviation is also measured. Findings indicated that 

increasing altitude reduces model performance but can be compensated by using 

a higher resolution image. For missions requiring high detection accuracy, the 

lowest altitude flights yield the best results. In contrast, more time-constrained 

operations can benefit from higher altitude but need more computation resources. 

In general, the study suggests a flight altitude of 40 meters with 1080×720 

resolution as the most efficient altitude. At 40 meters, detection accuracy slightly 

decreases, but area coverage and computation speed improve significantly by 

roughly three times with the top Efficiency Score and lowest Missing Rate. 

Keywords: Drone, Object detection, Search and Rescue. 

1 Introduction 

In recent years, the frequency and severity of both natural and man-made disasters 

have intensified. Robotics was invented to perform tasks that mimic human activity, 

and by the 1990s, rescue robotics began to assist in Search and Rescue (SAR) 

operations [1], followed by the development of aerial robotics or Unmanned Aerial 

Vehicles (UAVs) [2]. Today, UAVs (drones) are recognized as valuable tools for SAR 

due to their ability to access hard-to-reach areas, navigate complex environments, and 

provide aerial imagery beyond human perspective. 
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Drones offer rapid visual coverage in inaccessible or obstructed areas, enhancing 

SAR missions where timely and accurate victim localization is crucial [3][4]. However, 

detection in drone imagery poses technical challenges including occlusion, scale 

variability due to altitude, and false positives caused by similar-looking objects like 

rocks or shadows. These factors emphasize the need for robust, adaptive detection 

systems capable of operating under real-world constraints [5]. 

To support testing while avoiding ethical concerns, this study simulates human 

detection using clothing. This approach ensures safety, repeatability, and diverse 

training data collection. Although it lacks human body structure, clothing allows for 

scalable dataset creation under varying conditions, aiding model generalization. 

Despite advances in drone technology, SAR still faces trade-offs between detection 

accuracy, speed, and location precision. Higher altitudes enable faster area coverage 

but reduce image detail and GPS precision. Lower flights improve accuracy but slow 

the process. Current detection systems struggle to balance these constraints effectively. 

This study addresses this gap by implementing an object detection framework that 

evaluates how flight altitude affects detection accuracy, speed, and geolocation 

precision. 

The proposed framework utilizes the YOLO (You Only Look Once) object detection 

system [6], known for its speed and accuracy. Unlike traditional multi-stage models [7], 

YOLO processes entire images in one pass, making it suitable for real-time applications 

on compact drone hardware. Its adaptability through pretrained models enhances field 

readiness without complex setups. 

This study aims to develop a practical SAR framework using aerial imagery to detect 

and geolocate objects via GPS. It examines how flight altitude and image resolution 

impact detection performance. Since higher altitudes reduce pixel density, larger image 

resolutions than YOLO’s default 640×640 may be needed for accurate results. The goal 

is to optimize detection accuracy, speed, and operational suitability for real-time SAR 

applications. 

2 2. Literature Review 

2.1 Drone Technology in Search and Rescue Operations 

Drone technology has significantly enhanced Search and Rescue (SAR) operations 

by enabling faster data collection over large or difficult-to-access areas. Beyond simply 

covering ground quickly, drones equipped with cameras and GPS allow for aerial 

imaging that can be processed for automated object detection and precise geolocation. 

This ability can lead to significant improvement in locating missing humans or objects. 

For example, Smith et al. [8] demonstrated that using drones in mountain rescues 

reduced search times by 72% compared to traditional methods. However, real-world 

applications still face many challenges. Lin et al. [9] noted that regulatory restrictions, 

such as limitations to restrict to fly beyond visual line-of-sight of the controller pilot 

flights in 78% of countries, and short battery life usually under 30 minutes for most 

commercial drones. These problems can hinder prolonged or large-scale operations. 
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These limitations highlight the need for efficient detection algorithms that can perform 

accurately and quickly within the drone's operational constraints. 

2.2 The Human Detection Challenge 

Detecting humans from aerial imagery remains fraught with difficulties due to 

factors such as occlusion, scale variance, and false positives. Occlusion: Rasmussen et 

al. [10] found that, in forests, trees and bushes obscure 42% of targets in from the 

drone’s camera, while Brown et al. [11] showed thermal camera doesn’t work well if 

the plants cover the body heat signatures. Scale Variance: A person’s size in drone 

imagery shrinks drastically with altitude. Wang and Ng [12] study shown that a 

0.5meters tall human appears as just 5 pixels at 100m altitude in the image, making the 

detection algorithms are very difficult to detect. Wang et al. [13] explicitly warns 

against relying on targets smaller than 10 pixels. False Positives: The NATO STO [14] 

reported that 35% of detections in testing areas were animals, shadows, or trash. 

Leading to a critical issue when lives are at stake. 

In the past decade, object detection has improved a lot because of the development 

in deep learning. Among these, the You Only Look Once (YOLO) framework, initially 

proposed by Redmon et al. [15], has gained prominence due to its ability to perform 

real-time object detection with high accuracy. Unlike traditional two-stage detectors 

like R-CNN, YOLO only needs one step, directly predicting bounding boxes and class 

probabilities from the input image in one evaluation pass. This architecture drastically 

reduces inference time, making it suitable for time-sensitive applications such as 

autonomous driving cars, UAV surveillance, and real-time video analysis. The YOLO 

algorithm is still continuously developed over the years, including YOLOv3 [16], 

YOLOv8, and YOLOv11, which have introduced architectural refinements, improved 

backbone networks, and enhanced training strategies to achieve better trade-offs 

between accuracy and computational efficiency. These new models are very helpful for 

SAR tasks, where speed and accuracy are both important. Table 2.1 shows how these 

models perform. 

2.3 Photogrammetry 

The geolocation of detected objects is derived through photogrammetric 

transformations using the Universal Transverse Mercator (UTM) projection system 

with the WGS84 reference ellipsoid. This method ensures compatibility with global 

mapping standards by converting pixel coordinates from drone imagery into real-world 

geographic positions. A key factor in this process is the Ground Sampling Distance 

(GSD), which quantifies the ground area represented by a single pixel [17]. Calculated 

as: 

𝐺𝑆𝐷 =
𝑆𝑤 ∙ ℎ

𝑓 ∙ 𝑁
 

where 𝑆𝑤 is the camera sensor width, ℎ is the drone altitude, 𝑓 is the focal length, 

and 𝑁 is the image width in pixels. Smaller GSD values (achieved at lower altitudes) 
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enhance detection accuracy by increasing pixel density, while higher altitudes expand 

coverage at the expense of resolution. 

 

For nadir (vertically downward) camera angles, distortion is minimized, simplifying 

object detection and geolocation. However, tilted camera angles introduce geometric 

distortions that require corrections for drone orientation—roll (𝜃, lateral tilt), pitch (α, 

forward/backward tilt), and yaw (∅, rotation around the vertical axis). These corrections 

are applied using rotation matrices [18]: 

 

𝑅𝑧(∅) = [
𝑐𝑜𝑠 ∅ − sin ∅ 0
sin∅ cos ∅ 0

0 0 1
] , 𝑅𝑦(α) = [

𝑐𝑜𝑠 α 0 sin α
0 1 0

− sin α 0 cos α
] , 𝑅𝑥(𝜃) = [

1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

] 

The combined rotation matrix 𝑅𝐼
𝐺 = 𝑅𝑧(∅) · 𝑅𝑦(α) · 𝑅𝑥(𝜃)  aligns the camera’s 

local coordinate system with the global UTM coordinates. Then, pixel coordinates are 

mapped to real-world locations using the camera matrix (𝐾) and scaled by λ =
ℎ

𝑓∙𝑐𝑜𝑠 𝜃∙𝑐𝑜𝑠 α
 to correct perspective distortion. 

The final geolocation combines scaled rotations with the drone’s GPS position: 

𝐶𝐻⃑⃑ ⃑⃑  ⃑
𝑤
 =  λ ∙ 𝑅𝐼

𝐺 (𝐶𝐻⃑⃑ ⃑⃑  ⃑
𝑖
)
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

 +  𝜀 

where 𝐶𝐻⃑⃑ ⃑⃑  ⃑
𝑤

represents the object’s global coordinates, 𝐶𝐻⃑⃑ ⃑⃑  ⃑
𝑖

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  is the 

normalized image vector, and 𝜀 accounts for residual errors (e.g., lens distortion, GPS 

noise). 

The derived local coordinates are converted to WGS84 latitude/longitude using 

Coordinate Reference System (CRS) transformations [19], ensuring interoperability 

with mapping tools like Leaflet. This framework balances technical precision with real-

world scalability, addressing the operational trade-off between detection accuracy and 

coverage efficiency. 

2.4 The Measurement of Accuracy Metrics 

In evaluating the performance of a classification model, particularly in supervised 

machine learning tasks, a confusion matrix serves as a fundamental analytical tool [20]. 

It presents a tabulated comparison between the predicted labels output by the model 

and the actual ground-truth labels, offering a comprehensive view of classification 

accuracy. A fundamental tool for evaluating classification performance is the confusion 

matrix, which categorizes predictions as: 

- True Positives (TP): Instances correctly predicted as belonging to the positive 

class. 

- True Negatives (TN): Instances correctly predicted as belonging to the negative 

class. 

- False Positives (FP): Instances incorrectly predicted as positive (Type I error). 

- False Negatives (FN): Instances incorrectly predicted as negative (Type II 

error). 

The two most common metrics derived from this matrix are: 
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- Precision (positive predictive value) measures how accurate the detection results 

are. Precision is a good metric for the model if the cost of a False Positive is 

high. 

- Recall (sensitivity) quantifies the number of positive classes predicted from all 

positive examples. Recall is a good measure when the cost of a False Negative 

is high. 

In object detection tasks, model performance is frequently evaluated using 

Intersection over Union (IoU) and Average Precision (AP) metrics. These metrics 

provide insight into both the localization and classification accuracy of predicted 

bounding boxes. Intersection Over Union (IoU) is used to find the difference between 

the ground truth annotation and the predicted bounding boxes 

Average Precision (AP) summarizes the precision-recall curve, which is obtained by 

varying the confidence threshold of detections. Precision is defined as the ratio of true 

positive detections to the total number of predicted positives, while Recall measures the 

proportion of true positives identified out of all actual instances. The Mean Average 

Precision (mAP) metric integrates both precision and recall by averaging the area under 

the precision-recall curve across various confidence thresholds and object classes. Two 

specific versions are: 

- mAP@0.5: average precision at IoU threshold of 0.5. 

- mAP@0.5:0.95: average precision across IoU thresholds from 0.5 to 0.95 in 

increments of 0.05. 

2.5 The Measurement of Geolocation Error 

To measure the geolocation error distance, the Haversine formula is used to calculate 

the great circle distance between two points on the surface of a sphere. The parameter 

used to calculate the distance is the radius and its latitudinal and longitudinal 

coordinates. To calculate the spheroid object like the Earth, the radius used for the 

formula is the mean radius distance which will give some erroneous but still often 

acceptable for many geospatial navigation applications [21]. Given two points on the 

globe, defined by their latitude and longitude in radians, the Haversine formula 

calculates the distance between these points. 

3 Data and Methodology 

3.1 Overview of the Framework Design 

 

Dataset 
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Preprocessin
g & 
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YOLOv11 
Pretrained 
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Fig. 1. The framework used for train custom model with YOLOv11 
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Custom Model Training Framework: This pipeline trains a YOLOv11-based object 

detection model using drone-captured imagery. The process begins with dataset 

creation, where clothing items are labeled as human proxies in YOLO format across 

diverse altitudes (5–30m) and backgrounds (grass, soil, concrete). Raw images 

undergo preprocessing (resizing to 640×640 pixels) and augmentation (rotation, 

scaling, brightness adjustments) to enhance robustness. Transfer learning is applied 

using pretrained COCO dataset weights, enabling efficient fine-tuning on the custom 

dataset. The output is a set of custom weights optimized for detecting small objects in 

aerial imagery, balancing speed and accuracy for SAR applications. 

 

 

Detection and Geolocation Framework: Deployed in real-time SAR missions, this 

module processes drone imagery to detect objects and compute their geographic 

coordinates. Input images, embedded with metadata (GPS, altitude, camera 

parameters), are preprocessed to match the trained model’s input dimensions 

(640×640). The YOLOv11 model generates bounding boxes around detected objects, 

whose pixel coordinates are converted to real-world locations using photogrammetric 

transformations. This involves compensating for drone orientation (yaw, pitch, roll), 

lens distortion, and ground sampling distance (GSD). Outputs include annotated images 

displaying detected coordinates, enabling rapid spatial validation by rescue teams. 

The frameworks are designed to address the SAR-specific trade-off between 

detection accuracy and operational speed. By integrating altitude-aware training and 

geolocation error correction, the system optimizes performance across varying flight 

conditions, ensuring scalability for real-world deployment. 

 

Drone Image 
Input

Preprocessing
Object 

Detection 
Model

Detection 
Bounding 

Boxes

Geolocation 
Calculation

Final 
Geolocation 

Output

Visualization 
on MAP

Fig. 2. The framework used for train custom model with YOLOv11 



Data Science and Engineering (DSE) Record, Volume 6, issue 1.                                            322 

3.2 Dataset Design  

In this independent study, human detection is simulated using clothing to represent a 

human. This approach is adopted due to various constraints, such as ethical concerns 

and limitations in data collection. In addition, open-source datasets lack human images 

captured from various altitudes that range from low to high altitudes. Moreover, for 

effective model training, data collected across diverse backgrounds and time periods. 

In this 

Independent study, the total use of clothing for the training model is a total of 20, 

consisting of long-sleeved shirts, sleeveless shirts, t-shirts, shorts, and trousers. The 

color and pattern selection for model training is also a combination of dark to bright 

colors, plain to camouflage patterns. All the dataset is collected and labeled into a single 

class as “clothing" for training aiming to simplify the detection model and reduce the 

number of needed datasets. 

3.3 Dataset collection 

The data collecting part uses three different backgrounds of the object for the model 

including grass, soil, and concrete as shown in Table 1. The height of the collecting 

drone image varies from a height above ground of 5m up to 30m. Most of the image 

collection is in a range of 5m and 20m to avoid training with very small objects since 

YOLO is used to train with sizes of 640x640 pixels. 

 
Table 1. Total clothing class labeled for training model 

Background 
Height 

5m 10m 15m 20m >20m 

Soil 40 74 88 168 248 

Concrete 56 72 172 183 158 

Grass 96 137 161 209 55 

Total 192 283 421 560 461 

 

The total image for training the model is as shown in Table 2. 

 
Table 2. Total image in the dataset 

Number of training 

objects in each image 
Number of images 

0 22 

4 280 

5-10 7 

10-15 9 

>15 33 

Total 351 
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In the model training process, the image is split to use as training and validation as 

84% and 16% which gives a total number of training 295 and 56 validation images 

respectively. 

3.4 Dataset Preprocessing and Augmentation 

After collecting the dataset, all the images are annotated to YOLOv11 format then 

resized to 640 and augmented with the parameter by using https://roboflow.com [22] 

as shown in Table 3. 
Table 3. Augmentations parameter 

Augmentation Parameter 

90° Rotate Clockwise, Counter-Clockwise 

Crop 0% Minimum Zoom, 20% Maximum Zoom 

Rotation Between -15° and +15° 

Shear ±10° Horizontal, ±10° Vertical 

Saturation Between -15° and +15° 

Hue Between -25% and +25% 

Brightness Between -15% and +15% 

Exposure Between -10% and +10% 

Blur Up to 2.5px 

Noise Up to 0.1% of pixels 

 

The augmentation applies to training for the model's robustness with real-world 

scenarios. The number of augmented images is multiplied by 3 (including one of the 

original image), giving a total of training images after an augmented total of 885 

images. 

3.5 Model Training 

The model was trained using a pretrained YOLOv11 model (yolov11l.pt), which was 

fine-tuned on the custom dataset. The training utilized standard YOLO hyperparameters 

and was implemented in Python 3.13.3 using Ultralytics’ YOLOv11 framework built 

on PyTorch. 

To explore the effects of image resolution on detection accuracy and computational 

cost, the model was tested on input sizes ranging from 640×640 up to 5472×3648, 

including 720×480, 1080×720, 1620×1080, 2432×1620, 3648×2432 to maintain the 

original 3:2 aspect ratio. 

3.6 Drone Flight and Testing 

The search method of the flight is using exhaustive search in the testing area. The 

starting point of each flight height is determined by the DJI Ground Station Pro (DJI 

GS Pro) algorithm. Each drone flight followed a pre-programmed search path created 
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using DJI GS Pro, with the drone capturing images in nadir angle (camera pointing 

directly downward) to cover the testing area of 10,000 m². The search path was 

designed in a grid pattern with 75% front overlap and 60% side overlap to make sure 

the area is fully covered and has enough overlap between each image. Hover & Capture 

mode was used to capture the images at each point while keeping the camera facing 

downward. 

The testing experiment was done at four different flight altitudes: 20 meters, 40 

meters, 60 meters, and 80 meters above ground level. For each altitude, the flight time 

and number of images captured were recorded. These images were used for testing with 

the trained YOLOv11 model by using validation mode. The model outputs detection 

results including bounding boxes and the class label. 

Each detection output was processed to calculate the geolocation coordinates of the 

object. The center point of each bounding box was used and combined with metadata 

from the drone such as GPS location, altitude, and camera parameters. Then the real-

world latitude and longitude were calculated using the geolocation transformation 

process. 

This testing was designed to evaluate the model's performance in different flight 

heights. The performance metrics used in the evaluation are mAP@0.5, 

mAP@0.5:0.95, precision, recall, and detection time. The final detection results also 

include the bounding boxes and geolocation coordinates of each detected object. 

 

 

 

 

 

  

 

 

 

 

 

 

Object to detected 

Searching method 

Set of images 

Object detection and 

geolocation from drone 

images framework 

Result image contains 

of bounding box and 

geolocation including 

map output 

Searching area 

by each height 

Fig. 3. Design of drone flight path in testing of framework 
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3.7 Evaluation Metrics 

The system’s performance is evaluated using metrics that assess detection 

accuracy, geolocation precision, and operational efficiency, ensuring alignment with 

search and rescue (SAR) mission requirements. 

Detection Accuracy Metrics 

- Mean Average Precision (mAP): 

• mAP@0.5: Measures detection accuracy at an Intersection over Union 

(IoU) threshold of 0.5, reflecting real-world SAR needs where 

approximate localization suffices. 

• mAP@0.5:0.95: Evaluates performance across IoU thresholds from 

0.5 to 0.95, providing a stricter assessment of bounding box precision. 

- Precision and Recall: 

• Precision quantifies the ratio of true positive detections to all positive 

predictions, minimizing false alarms. 

• Recall measures the model’s ability to identify all true positives, 

critical for minimizing missed targets in SAR operations. 

 

Geolocation Accuracy 

- Haversine Distance: Computes the great-circle distance between predicted and 

ground-truth coordinates using latitude/longitude values 

𝑑 = 2𝑅 𝑎𝑟𝑐𝑠𝑖𝑛 (√𝑠𝑖𝑛2 (
∅2 − ∅1

2
) + 𝑐𝑜𝑠(∅1) 𝑐𝑜𝑠(∅2) 𝑠𝑖𝑛2 (

𝜆2 − 𝜆1

2
)) 

where 𝑅 is Earth’s radius (6,371 km), ∅2 − ∅1 and 𝜆2 − 𝜆1 are latitude and 

longitude differences are in radians. 

 

Operational Efficiency Metrics 

- Computation Time: Total processing time per image, measured in seconds, to 

ensure real-time applicability. 

- Efficiency Score: Balances detection accuracy (mAP@0.5) against computation 

time: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 =  
𝑀𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑖𝑐𝑖𝑠𝑖𝑜𝑛

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 

- Missing Rate: Complement of Recall (1 − 𝑅𝑒𝑐𝑎𝑙𝑙), quantifying undetected 

targets. 

3.8 Tools and Hardware 

- Drone: DJI Phantom 4 Pro V2.0, equipped with a 1-inch CMOS sensor (focal 

length: 8.8 mm, 20MP, JPEG format, image size: 5472×3648) [23] 

- GPS: Garmin GPSMAP® 67i (Multi-band GNSS) [24] 

- Hardware: NVIDIA RTX 2070 SUPER, AMD Ryzen 7 3700X, 80 GB RAM 
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- Libraries: PyTorch, OpenCV, Ultralytics YOLO, NumPy, Pandas, Matplotlib, 

Folium, Pyproj 

- Software: DJI GS Pro (for flight path planning), Roboflow (for image 

annotation and augmentation), Exiftool (for metadata extraction) 

- Development Environment: Python 3.13.3 on Windows 11 

4 Results 

4.1 Experimental Setup Summary 

The testing of the proposed framework was performed in a real-world environment 

at Thanawan Park, Chiang Mai, over a fixed area of 10,000 m². The drone was deployed 

at four different altitudes: 20 m, 40 m, 60 m, and 80 m above ground level. The testing 

at each altitude followed the setup described in Section 3.6, using a grid search path 

generated by DJI Ground Station Pro (GS Pro) with 75% front overlap and 60% side 

overlap. 

Images captured from each altitude were used as input to the trained YOLOv11 

model in validation mode. The model returned detection outputs including bounding 

boxes and object classes. For each detection, geolocation coordinates were calculated 

based on drone metadata and image geometry. 

This setup allowed the study to evaluate the system’s detection accuracy, geolocation 

precision, and performance trade-offs at different flight heights. The following sections 

present the analysis and comparison of these results across altitudes and image 

resolutions. 

4.2 Area Coverage and Search Duration 

The drone was flown at 4 different altitudes over the same area (fixed at 10,000 m2) 

using the same flight plan. The data collected in terms of the coverage area compared 

to the time of searching drone is shown in Table 4. 

 
Table 4. The flight coverage area of each flight altitude 

Altitude (m) Flight Time (min) 
Area per Minute 

(m²/min) 

Seconds per m² 

20 13.3 750.9 0.08 

40 4.3 2316.6 0.03 

60 2.6 4347.8 0.014 

80 1.2 8108.1 0.0074 
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Figure 4 presents the searching time and area coverage across four flight altitudes 

(20 m, 40 m, 60 m, and 80 m). In this study, the search area was fixed at 10,000 m². It 

was observed that flights conducted at lower altitudes required longer hovering times 

to capture images, resulting in increased overall search duration compared to higher-

altitude flights. As illustrated in Figure 4.5, increasing flight altitude significantly 

reduces the total search time. This is attributed to the larger ground coverage per image 

at higher altitudes, which exponentially decreases the required image capture frequency 

and duration. 

4.3 Geolocation Accuracy 

After detection, the geolocation of the object is calculated and compared with the 

real location (measured by GNSS). The difference is measured by the Haversine 

distance formula. The results are shown in Table 5. 

 
Table 5. Average of haversine error at a different flight altitude 

Altitude (m) Avg Haversine Error (m) 

20 9.64 

40 23.63 

60 24.37 

80 32.79 

Fig. 4. Comparison between drone searching time and drone flight altitude 
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Fig. 5. Comparison between drone geological error and flight altitude 

Figure 5 presents the average of Haversine error across four flight altitudes (20 m, 

40 m, 60 m, and 80 m). The increase in error with flight altitude is what the study 

expected due to several reasons. First, the higher image from drones presents the object 

presented by fewer pixels. This led to ground sampling distance increases with this 

distance. Moreover, the error does not increase in direct proportion to altitude because 

with increasing altitude and the geolocation of the object image depends on its position 

within the image. Objects closer to the image center tend to have more accurate 

geolocation while those farther off center are more affected by lens distortion and errors 

in pixel-to-coordinate conversion increase. Furthermore, any pixel-level errors translate 

into larger errors in larger real-world coordinates also become greater. 

4.4 Detection Accuracy Across Image Resolutions and Altitudes 

The custom YOLOv11 model was tested with various image input resolutions. The 

mAP@0.5, mAP@0.5:0.95, precision, recall, and computation time were recorded. The 

results of the testing are shown in Table 6. 

 
Table 6. Accuracy of the model with custom-trained weight adjust by input resolution 

Resolution 

(px) 

Altitude mAP@0.5 mAP@0.5:

0.95 

Precision Recall Time (s) 

640 × 640 20 m 0.375 0.260 0.458 0.500 42.17 

 40 m 0.156 0.059 0.112 0.519 22.24 

 60 m 0.012 0.005 0.056 0.054 6.70 

 80 m 0.000 0.000 0.000 0.000 6.22 

720 × 480 20 m 0.390 0.275 0.582 0.450 29.33 
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 40 m 0.221 0.118 0.323 0.407 8.66 

 60 m 0.086 0.042 0.163 0.216 7.33 

 80 m 0.004 0.001 0.009 0.021 6.91 

1080 × 720 20 m 0.327 0.258 0.595 0.442 29.59 

 40 m 0.326 0.220 0.377 0.696 8.92 

 60 m 0.152 0.086 0.253 0.351 8.19 

 80 m 0.030 0.017 0.099 0.128 7.29 

1620 × 1080 20 m 0.306 0.246 0.453 0.450 60.59 

 40 m 0.375 0.272 0.527 0.575 10.56 

 60 m 0.193 0.139 0.429 0.324 8.59 

 80 m 0.064 0.040 0.132 0.255 7.55 

2432 × 1620 20 m 0.279 0.242 0.352 0.500 147.55 

 40 m 0.362 0.276 0.425 0.593 64.43 

 60 m 0.210 0.161 0.374 0.339 33.88 

 80 m 0.122 0.090 0.281 0.199 11.84 

3648 × 2432 20 m -(1) -(1) -(1) -(1) -(1) 

 40 m -(1) -(1) -(1) -(1) -(1) 

 60 m 0.298 0.232 0.332 0.432 82.42 

 80 m 0.205 0.157 0.378 0.340 44.43 

5472 × 3648 all -(1) -(1) -(1) -(1) -(1) 

Note (1): The GPU runs out of memory while testing the model with the image 

resolution input 

4.5 Comparison of Flight Altitudes Across Image Resolutions and 

Detection Accuracy Metrics 

  

  
Fig. 6. The relationship between accuracy metrics and image resolution in different flight 

altitudes 
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Figure 6 presents the effect of image resolution on detection performance metrics 

such as Mean Average Precision (mAP), Precision, and Recall across four flight 

altitudes (20 m, 40 m, 60 m, and 80 m). 

Mean Average Precision (mAP) varies distinctly with altitude and resolution. At the 

lowest altitude (20 m), Mean Average Precision starts relatively high, even at low 

resolutions, slightly increasing at 780×480 resolution before experiencing a minor 

decline at the highest resolution tested. In contrast, at 40 m, Mean Average Precision 

improves substantially with increasing resolution, peaking at 1620×1080 pixels, 

followed by a slight drop at the highest resolution. At 60 m and 80 m, detection 

performance begins lower but steadily improves with increasing resolution, 

highlighting the growing importance of high image detail for accurate detection at 

greater heights. 

Precision trends echo similar altitude-dependent patterns. At 20 m, Precision peaks 

at a medium resolution (1080×720) and then decreases at higher resolutions, potentially 

due to overfitting or noise, as objects are already well-resolved. For 40 m and 60 m, 

Precision increases with resolution, reaching maximum values at 1620×1080 pixels 

before slightly declining at the highest tested resolution. At 80 m, Precision starts near 

zero at low resolution but rises steadily, surpassing the 60 m level at the maximum 

resolution of 3648×2432 pixels, underscoring the critical role of high-resolution 

imaging for high-altitude detection. 

Recall performance also demonstrates altitude-specific trends. At 20 m, Recall 

remains consistently stable across all resolutions, indicating that even low-resolution 

images suffice for reliable detection at close range. At 40 m, Recall peaks at 1080×720 

pixels but declines at higher resolutions, possibly due to image complexity or noise 

effects. Both 60 m and 80 m altitudes show a steady increase in Recall with resolution, 

with the highest values observed at 3648×2432 pixels, reflecting the enhanced 

capability to detect smaller, less distinct objects when image detail improves. 

These results collectively demonstrate that the influence of image resolution on 

detection accuracy is strongly dependent on flight altitude. Lower altitudes allow 

effective detection even at moderate resolutions due to a larger apparent object size. In 

contrast, higher altitudes necessitate increased image resolution to compensate for 

reduced object size and detail, thereby improving detection metrics significantly. 

4.6 Comparison of Flight Time and Computation Time at Each 

Altitude 
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Fig. 7. Comparison between accuracy metrics across different image resolutions in different 

flight altitudes 

Figure 7 presents evaluation metrics—including mAP@0.5, mAP@0.5:0.95, 

Precision, and Recall—analyzed across varying image resolutions at four flight 

altitudes (20 m, 40 m, 60 m, and 80 m). 

At 20 meters, both mAP@0.5 and mAP@0.5:0.95 exhibit a decreasing trend as 

image resolution increases. The highest values are observed at the lowest resolution 

(720×480), with a gradual decline up to 2432×1620 pixels. Precision peaks at a medium 

resolution (1080×720), nearing 0.6, before steadily decreasing at higher resolutions, 

likely due to increased noise or overfitting since objects are already clearly visible at 

close range. In contrast, Recall remains relatively stable around 0.45 to 0.5 across all 

resolutions, indicating that while overall detection quality is sensitive to resolution, the 

model’s ability to detect objects remains consistent. These results suggest that for low-

altitude flights, low to medium resolutions optimize detection performance, and higher 

resolutions may reduce efficiency without significant gains. 

At 40 meters, the metrics show more complex trends. Both mAP@0.5 and 

mAP@0.5:0.95 increase with resolution, peaking at 2432×1620 pixels before 

stabilizing. Precision starts very low but rises consistently, reaching a peak at 

1620×1080 pixels, followed by a slight decline at the highest resolution. Recall is 

highest among all altitudes at lower resolutions, peaking at 1080×720 before declining 

and stabilizing at higher resolutions. This indicates that moderate to high resolutions 

improve detection accuracy at 40 m, but there is a trade-off, as improvements in 

Precision and mAP come at the cost of decreased Recall beyond certain resolution 

thresholds. This trade-off highlights the importance of balancing metrics rather than 

optimizing a single one. 

At 60 meters, all metrics generally improve as resolution increases. Both mAP@0.5 

and mAP@0.5:0.95 show consistent upward trends. Precision peaks at 1620×1080 

pixels before slightly decreasing at the highest resolution, while Recall sharply rises 

from lower resolutions, peaks at 1080×720, dips slightly, then increases again at higher 

resolutions. This pattern suggests that increasing resolution substantially enhances 

detection accuracy at 60 m, although beyond a certain resolution, gains in Precision 

plateau or slightly decline, indicating diminishing returns at ultra-high resolutions. 

At 80 meters, evaluation metrics demonstrate continuous improvement with 

increasing resolution. Both mAP metrics steadily increase without plateauing or 

declining at the highest tested resolution, indicating a strong positive correlation 

between resolution and detection accuracy at extended distances. Precision rises sharply 
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as resolution improves, and Recall, after an initial increase and slight dip, ultimately 

peaks at the highest resolution. Unlike lower altitudes, there is no observable 

degradation in performance at ultra-high resolutions, underscoring the necessity of 

high-resolution imagery for effective detection at greater flight heights. 

4.7 Efficiency Score 

For the trade-off between the model accuracy and time. Efficiency Scores are created 

to evaluate model efficiency, which is very important when working with many images 

in real time. Even though flight time is the largest part of total time at each height, we 

use computation time to measure efficiency because it shows how well the detection 

system performs. These scores help us see how good the model is compared to the time 

it takes to make predictions. A higher score means the model gives better accuracy with 

less processing time. This is very useful in real-time or low-resource situations. The 

Efficiency Score across different altitudes in each image resolution is shown in Table 

7. 
Table 7. Efficiency Score of each flight altitude and image resolution 

Resolution 20m 40m 60m 80m 

640x640 0.00889 0.00702 0.00181 0.00000 

720x480 0.01331 0.02552 0.01169 0.00064 

1080x720 0.01106 0.03656 0.01860 0.00410 

1620x1080 0.00506 0.03551 0.02251 0.00848 

2432x1620 0.00189 0.00562 0.00620 0.01030 

3648x2432 N/A N/A 0.00361 0.00461 

 

From Table 7, the highest Efficiency Score of the model is achieved at the flight 

altitude of 40m. At the resolution of 1080x720, giving the value of 0.03656. 

4.8 Missing Rate 

In the context of evaluating detection effectiveness, it’s equally important to assess 

how many true positives were missed by the model, which is referred to as the Missing 

Rate. Since the Recall is the ratio of true positives to all actual positives, and vice versa, 

the Missing Rate is simply the complement of Recall. The Missing Rate across different 

altitudes in each image resolution is shown in Table 8. 

 
Table 8. Missing Rate of each flight altitude and image resolution 

Resolution 20m 40m 60m 80m 

640x640 0.5000 0.4815 0.9459 1.0000 

720x480 0.5500 0.5926 0.7838 0.9787 

1080x720 0.5584 0.3041 0.6486 0.8723 

1620x1080 0.5500 0.4251 0.6757 0.7447 
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2432x1620 0.5000 0.4074 0.6612 0.8007 

3648x2432 N/A N/A 0.5676 0.6596 

From Table 8, the lower Missing Rate better the model performance. Note that the 

lowest Missing Rate from altitude is 0.5000 in both resolutions of 640x640 and 

2432x1620 pixels. The lower resolution is considered more appropriate since it requires 

less computation time. The lowest Missing Rate of the model is achieved at the flight 

altitude of 40m. At the resolution of 1080x720, giving the value of 0.3041. 

5 Discussion and Conclusion 

5.1 Efficiency Trade-off: Accuracy vs. Time vs. Area Coverage 

In real-world SAR operations, not only is the objective of each mission different, but 

the constraint of each individual operation also varies significantly. Factors such as the 

size of the search area, battery limitations, and onboard computational capacity must 

all be considered when planning and executing detection missions.  

- If Accuracy is the Priority: Since the mAP@0.5 and mAP@0.5:0.95 are both 

the same measurement, the mAP@0.5 is the only represented here. As shown 

in Table 9, the comparison of drone performance across different altitudes by 

evaluating three competing factors: Mean Average Precision (mAP@0.5), 

processing time, and coverage efficiency. Mean Average Precision is prioritized 

when accuracy is the primary concern because it reflects Precision across 

different levels of Recall and considers both false positives and false negatives. 

 
Table 9. Comparison between accuracy vs. time vs. area coverage 

Height (m) 
Optimal 

resolution 

Best 

mAP@0.5 

Compu

tation 

time(s) 

Coverage area 

per minute 

(m2/min) 

Overall 

Efficiency 

20 720x480 0.3904 ~29 750.9 

Best accuracy, 

moderate 

computation time 

40 1620x1080 0.3750 ~11 2316.6 

High accuracy, 

lowest 

computation time 

60 3648x2432 0.2976 ~82 4347.8 

Normal accuracy, 

highest 

computation time 

80 3648x2432 0.2050 ~44 8108.1 

Lowest accuracy, 

high computation 

time 

 

From the Table 9, the highest mAP@0.5 is achieved at the lowest testing flight 

altitude of 20 meters at 720x480 pixels resolution. 
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- If Balance of Accuracy Needed: The balance of the model between accuracy 

and time can be determined using the Efficiency Score, which evaluates both 

accuracy and time. In Table 10, it compares drone performance across different 

altitudes by evaluating three competing factors: Efficiency Score, processing 

time, and coverage efficiency. 

 
Table 20. Comparison between Efficiency Score vs. time vs. area coverage 

Height (m) 
Optimal 

resolution 

Best 

Efficiency 

Score 

Compu

tation 

time(s) 

Coverage area 

per minute 

(m2/min)  

Overall 

Efficiency 

20 720x480 0.01331 ~29 750.9 
Low efficiency, 

low area/min 

40 1080x720 0.03656 ~9 2316.6 

Best efficiency, 

moderate 

area/min  

60 1620x1080 0.02251 ~9 4347.8 

Normal 

efficiency, high 

area/min 

80 2432x1620 0.01030 ~12 8108.1 

Lowest 

efficiency, 

highest area/min 

 

From the Table 10, the best efficiency of the model is achieved at a flight 

altitude of 40 meters at a 1080x720 pixels resolution. 

 

- If Completeness of Detection is the Priority: Sometimes in critical SAR 

operations, the priority of the mission requires completeness of detection to be 

more important than accuracy or model efficiency. From Table 11 compares 

drone performance across different altitudes by evaluating three competing 

factors: Missing Rate, processing time, and coverage efficiency. 

 
Table 31. Comparison between Missing Rate vs. time vs. area coverage 

Height (m) 
Optimal 

resolution 

Lowest 

Missing 

Rate 

Compu

tation 

time(s) 

Coverage area 

per minute 

(m2/min)  

Overall 

Efficiency 

20 640x640 0.5000 ~42 750.9 

Moderate 

performance, 

high computation 

time 

40 1080x720 0.3041 ~9 2316.6 

Best 

performance, 

lowest 

computation time 
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60 3648x2432 0.5676 ~82 4347.8 

Low 

performance, 

highest 

computation time 

80 3648x2432 0.6596 ~44 8108.1 

Lowest 

performance, 

high computation 

time 

 

From the Table 11, the lowest Missing Rate of the model is achieved at a flight 

altitude of 40 meters at a 1080x720 pixels resolution. Therefore, developing a 

practical guideline requires evaluating performance trade-offs under these 

constraints to select the most appropriate configuration for a given operational 

scenario. 

5.2 Conclusions 

From the human detection and geolocation framework of this independent study, 

which uses clothing as an object for detection. The result confirmed that increasing 

drone flight altitude influences greater errors in both object detection and geolocation, 

which aligns with expectations due to several factors.  

In terms of detection performance, the drone is highly dependent on the flight 

altitude. The object needed pixel size needed to identify generally increases along the 

altitude. The observation also shows that each drone altitude trend to have an optimal 

resolution for detecting objects. Increase images resolution beyond this optimal 

resolution, the performance of the model surprisingly does not increase but reduces the 

performance of the model. At higher altitudes, larger image resolutions are necessary 

to maintain reasonable accuracy. However, there is a trade-off that even higher 

resolution cannot fully compensate for the loss in performance such as seen at an 

altitude of 80 meters. Moreover, the increase in image resolution for object detection 

sharply raises the computation time. The impact of these effects makes the great 

efficiency of model.  

In contrast, as flight altitude increases, the coverage area per time is greater, as seen 

in the study the altitude of 80 meters covers the area faster than 4 times compared to 

the altitude of 20 meters. Therefore, efficient model deployments must account for 

various constraints such as the accuracy needed, computation resources, latency 

requirements, etc. 

The computation time also shows a notable trade-off between high and low 

resolutions. At higher altitudes, the border images from drones are bigger, resulting in 

fewer images needed for model prediction. Vice versa, at lower altitudes, the number 

of images required to process is larger than images from higher altitudes. This presents 

a significant change in balancing detection accuracy and computation resources, 

especially in real-time detection. 

In the geolocation extraction framework shows that not only flight altitude that 

affected the error but also the location of the object in the image plane. As the altitude 
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increases, the objects are represented with fewer pixels leading to a larger ground 

sampling distance. Furthermore, any pixel-level errors where used to translate into real-

world coordinates will become larger. 

The findings guidelines in this study are introduced with an intention to balance the 

altitude, resolution, performance, computation time, and coverage area. If needed of 

model accuracy metrics, the flight altitude should be low (20 meters in this study). The 

high flight altitudes are suitable for large area operations but also require larger image 

resolutions with high available computation costs to compensate for the performance 

needed. In general operation with no specific constraint or requirement, the 40 meters 

with a resolution of 1080x720 pixels are recommended. 

5.3 Discussion 

 

In this study, the YOLOv11 object detection model was used to identify and extract 

the geolocation using an image captured by a drone at a different flight altitude and 

computed accuracy in varied resolutions. While YOLO is widely recognized for its real-

time detection capabilities and computational efficiency, the results from this study 

reveal notable limitations in accuracy, particularly as the flight altitude increases. 

Specifically, as the altitude increases, the model's performance in both the detection 

and geolocation parts becomes greatly reduced. 

The object detection model in this study uses augmentation methods with an image 

in three backgrounds. The addition of a real-world visual complex environment such as 

foliage, cluttered backgrounds with debris or disaster-specific textures, and more varied 

terrains such as mud or water could help improve detection robustness. Incorporating 

these elements may enhance the ability to detect objects under challenging and realistic 

conditions commonly encountered in search and rescue operations.  

Since the aim of this study is to focus on the effect of drone altitude on the 

performance of the model, the model training in this study did not involve tuning any 

parameters. The YOLO model trains with an image size of 640x640, whereas the 

original image size is in a 3:2 aspect ratio. This can significantly impact the accuracy 

of the model due to image distortions. 

The pretrained weights used in this study are primarily trained on the COCO dataset, 

which is great for common image classes such as people, animals, and vehicles. This 

pretrained model may not generalize well with the aerial image plan taken from a drone. 

Although flight time is dominating the computation times, this study focuses on 

detection efficiency, since it directly affects how fast and scalable the system is in real-

time use. Unlike flight time, which stays mostly the same for each flight, computation 

time varies with image resolution and impacts system performance. To evaluate the 

balance between accuracy and speed, we use Efficiency Scores, which measure how 

much accuracy the model achieves for the time it takes to process images.  

In this study, object locations are taken from the DJI Phantom 4 camera’s EXIF data, 

which gives important information for the geolocation part. The use of different 

cameras or sensors such as with nadir might give more stable results with less image 

distortion and no gimbal tilts. However, an oblique view can be better in areas with 



Data Science and Engineering (DSE) Record, Volume 6, issue 1.                                            337 

many obstacles, as it can show objects that are hidden from above. This creates a trade-

off between accurate mapping and better visibility, which should be chosen based on 

the needs of the search and rescue mission. 
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