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Abstract This research presents a predictive model for determining the next-day 

price direction of EUR/USD in the Binary Options market. The study utilizes 

technical indicators and price data over a 10,000-day span, collected from 

TradingView, and applies machine learning techniques particularly an ensemble 

classification framework combining CNN, LSTM, SVM, and XGBoost models. A 

total of 23 features were engineered from candlestick data and popular indicators such 

as RSI, MACD, ATR, and EMA. Statistical analysis ensured data quality and 

distribution symmetry. Model performance was evaluated using accuracy, F1 score, 

and ROC-AUC metrics. The resulting ensemble model outperformed individual 

models in predictive accuracy and stability. This research contributes to the 

development of automated trading systems and serves as a foundation for further work 

in financial time series forecasting using machine learning. 
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1 Introduction 

Financial markets are highly dynamic and influenced by various factors such as global 

economic shifts, political events, and investor sentiment. Predicting asset price movements, 

especially in short time frames like a single day is both a practical need and a technical 

challenge for traders. Binary Options trading requires precise prediction of whether an 

asset’s price will go up or down over a fixed short period. While traditional technical 

analysis techniques like RSI (Relative Strength Index), EMA (Exponential Moving 

Average), and MACD (Moving Average Convergence Divergence) are useful, they often 

lack the ability to adapt to complex and fast-changing patterns in financial time series.With 

the advancement of machine learning and deep learning, models such as LSTM (Long 

Short-Term Memory) and CNN (Convolutional Neural Network) have shown strong 

capabilities in capturing temporal and nonlinear patterns. Furthermore, ensemble learning 
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by combining the strengths of multiple models can reduce individual model bias and 

improve prediction accuracy. This research aims to develop an ensemble classification 

model to predict the next-day direction of EUR/USD prices using a dataset of over 10,000 

candlesticks and 23 technical features. The model is intended to assist in decision-making 

for Binary Options trading by improving predictive performance over traditional 

approaches. 

 

 

Fig. 1. Binary Options trading interface for EUR/USD on IQ Option. 

Figure 1 Example of a Binary Options trading interface on IQ Option for the EUR/USD 

currency pair. The platform allows users to predict whether the asset price will rise ("Call") 

or fall ("Put") within a specified time frame. The chart displays real-time candlestick 

movements and technical indicators such as moving averages, Parabolic SAR, and RSI, 

which are commonly used in financial forecasting models. 

2 Literature Review 

Recent advances in machine learning and deep learning have led to increasingly 

effective models for financial market forecasting. Models such as Long Short-Term 

Memory (LSTM), Convolutional Neural Networks (CNN), and Support Vector Machines 

(SVM) have been widely applied to predict price movements in time-series data. These 

models can capture complex, nonlinear patterns that are difficult to detect using traditional 

statistical approaches (Selvin et al., 2017). Bi-Directional LSTM (Bi-LSTM) has been 

shown to improve prediction accuracy by learning from both past and future sequences in 

time-series data (Shah et al., 2021). Similarly, hybrid models that combine deep learning 
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and rule-based techniques have also proven effective, especially in volatile markets like 

cryptocurrency (Uzun et al., 2024). Additionally, ensemble learning techniques—including 

Stacking and Averaging—have gained attention for their ability to combine multiple models 

to improve generalization and reduce prediction error. Studies have demonstrated that 

combining LSTM, CNN, GRU (Gated recurrent unit), and tree-based models like XGBoost 

leads to more robust and accurate forecasting, particularly for short-term asset movements 

(Livieris et al., 2020; Karim et al., 2021). This research builds on those findings by 

integrating a variety of classifiers into a single ensemble model tailored for the Binary 

Options context, where predicting the next day's price direction (up or down) is critical to 

trading success. 

 

3 Data and Methodology 

3.1 Data Source 

The dataset used in this study consists of daily candlestick data for the EUR/USD 

currency pair, retrieved from FXCM via the TradingView platform. The data spans 10,015 

trading days from 1986 to 2025, and includes timestamped price information (open, high, 

low, close) along with technical indicators. The data was exported in CSV format and 

thoroughly validated for completeness and consistency prior to model development. A total 

of 23 features were engineered from the raw data, covering both price-based and indicator-

based metrics. These include 

1.) Candlestick Prices: Open, High, Low, Close 

2.) Trend Indicators: EMA (8, 13, 21, 34, 55, 100, 200), Bollinger Bands (Basis, 

Upper, Lower) 

3.) Momentum Indicators: RSI, RSI-based MA, MACD, Signal Line, Histogram 

4.) Volatility Indicators: Average True Range (ATR), Rolling Volatility 

5.) Others: Plot (RSI-derived), and timestamp (time) 

All features were normalized and inspected for correlation to ensure optimal input 

representation for the learning models. (see Figure 2 and Figure 3) 
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Fig. 2. Example of the first 10 rows of the input dataset, showing columns 1 to 12. 

 

Fig. 3. Example of the first 10 rows of the input dataset, showing columns 13 to 23. 

3.2    Statistical Feature Engineering 

To enhance the predictive capacity of the model, several statistical techniques were 

applied to construct meaningful features from the raw time-series data. These include: 

1.) Price Change Calculation 

Daily price change and percent change were computed using 

 

t t-1PriceChange=Close -Close  

t-1

PriceChange
Percent Change= x100

Close
 

2.) Directional Labeling 

A binary classification label was created based on the direction of the next day's closing 

price. 

t+1 t1 if Close >Close
Label=

0 otherwise




 

3.) Bullish and Bearish Candlestick Count 

Rolling windows were used to count the number of bullish (Close > Open) and bearish 

(Close < Open) candlesticks over the past N days to capture short-term trend behavior. 

4.) Symmetry and Distribution Checks 

Variables such as RSI and price change distributions were examined for symmetry using 

histogram plots (see Figure 4). This helped confirm the suitability of features for model 

input and reduced the likelihood of introducing bias during training. 
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5.) Volatility Estimation 

Rolling standard deviation was used to calculate Rolling Volatility, which captures 

recent fluctuations in price and serves as a measure of market uncertainty. 

These features were combined with traditional technical indicators to form a 

comprehensive input matrix for training the ensemble models. 

3.2.1 Feature Distribution and Analysis 

To evaluate the suitability of the input features for modeling, the distribution of key 

variables was analyzed. In particular, the Relative Strength Index (RSI) was selected due to 

its popularity in momentum-based trading strategies. The histogram and kernel density 

estimate (KDE) of RSI values revealed a near-symmetrical distribution centered around 50, 

with well-defined overbought and oversold thresholds at 70 and 30, respectively. 

 

Fig 4. Distribution analysis of the RSI values in the dataset, showing a symmetrical 

price distribution pattern. 

This symmetry supports the assumption that RSI can be used effectively in binary 

classification tasks related to price direction. 
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3.2.2 Feature Selection 

To identify the most informative features for predicting the next-day price movement, 

correlation analysis and feature importance scoring were performed: 

1.) Pearson and Spearman correlation coefficients were calculated between each 

feature and the target variable (binary price direction). 

2.) Random Forest feature importance was used to rank features based on their 

predictive contribution in a non-linear ensemble model. 

 

Fig 5. Pearson vs. Spearman correlation with the target variable. 

Figure 5 illustrates the correlation between each feature and the target variable using 

both Pearson (linear) and Spearman (rank-based) methods. Features such as RSI, Price 

Change, and Histogram show the strongest negative correlations with the target, indicating 

their high potential in distinguishing upward vs. downward price movements. Meanwhile, 

Rolling Volatility and Signal show the strongest positive correlations, though overall 

correlation values remain modest due to market complexity. 
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Fig 6. Feature importance ranking based on Random Forest. 

Figure 6 shows the feature importance of scores computed using a Random Forest 

classifier. The most influential features for predicting the next-day price direction include 

RSI, Price Change (%) and RSI-based MA, indicating their strong contribution to the 

model’s decision-making process. These features play a key role in capturing market 

momentum, volatility, and trend behavior. 

3.2.3  Final Feature Set and Preprocessing 

After selection and validation, a refined dataset of 33 columns was constructed (see 

Figure 5), including both raw prices, technical indicators, engineered features, and the 

binary Target variable indicating upward or downward price movement. 

 

Fig 5. Final dataset structure showing all selected features. 
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To ensure effective model convergence, feature scaling was applied using 

standardization (z-score normalization) for all continuous numerical features. This 

normalization step helped align feature ranges and improve training stability across all 

model types. Additionally, the dataset was split into training and testing sets using an 80:20 

ratio, ensuring chronological integrity to preserve the time-series nature of the data. The 

training set was used for model fitting and cross-validation, while the test set was reserved 

for final evaluation. 

3.3   Model Design Overview 

This study aims to develop an ensemble classification model to predict the next-day 

direction of the EUR/USD price (up/down) in the context of Binary Options trading. The 

model is designed to leverage the strengths of both traditional machine learning classifiers 

and deep learning architecture. 

The overall structure consists of two main stages 

3.3.1 Base Models: Independently trained classifiers that produce prediction 

probabilities 

3.3.2 Meta-Model: A higher-level model that combines the base predictions into final 

decisions 

 

Fig 6. Initial Stacking Architecture without LSTM 
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Figure 6 illustrates the initial stacking ensemble architecture without LSTM. The dataset 

is processed through three base learners XGBoost, LightGBM, and Random Forest each 

producing predictions that are passed to a Logistic Regression meta-learner. The meta-

learner combines the outputs to generate the final model decision. This structure emphasizes 

parallel model training and predictive aggregation. 

 
Fig 7. Final Stacking Architecture with LSTM added as base learner 

Figure 7 shows the final stacking ensemble architecture with LSTM integrated as an 

additional base learner. Alongside XGBoost, LightGBM, and Random Forest, the LSTM 

model processes sequential data and contributes probability scores to the meta-learner 

(Logistic Regression). This addition enhances the ensemble’s ability to capture temporal 

patterns in financial time series, improving overall predictive performance. 

3.4  Base Models 

The following models were selected as base learners due to their complementary 

strengths: 

1) XGBoost: gradient boosting framework, well-suited for tabular data 

2) LightGBM: fast and efficient boosting model for large datasets 
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3) Random Forest: ensemble of decision trees, stable and interpretable 

4) Support Vector Machine (SVM): margin-based classification with high precision 

5) Long Short-Term Memory (LSTM): deep learning model for sequential data, 

added to capture temporal dynamics 

 

 

 

3.5  Meta-Model (Stacking) 

A Logistic Regression classifier was used as the meta-learner to integrate predictions 

from all base models. Base model outputs (class probabilities) were used as inputs for 

training the meta-model. This stacking strategy improves generalization and reduces bias 

from individual models. 

 

Fig 8. Final Ensemble Flow – Dataset → Base Learners → Meta-Learner → Final 

Prediction 

Figure 8 illustrates the final ensemble model architecture implemented in this research. 

The workflow begins with a structured dataset, which is preprocessed and then passed to a 

set of diverse base learners: Random Forest, XGBoost, LSTM, and SVM. Each model 

independently analyzes the data and produces predictions, leveraging different strengths 

such as tree-based decision making, gradient boosting, sequence learning, and margin 

classification.These individual predictions are not used directly, but are forwarded to a 

meta-learner, typically a Logistic Regression model. The meta-learner is trained to 

optimally combine the base model outputs into a final prediction. This stacking ensemble 

design helps reduce model bias, improve generalization, and boost overall accuracy. It also 
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enhances the model’s adaptability to both linear and nonlinear patterns in financial time-

series data. 

3.6  Model Selection and Justification 

To support model selection, performance was evaluated at different confidence 

intervals. Only predictions with confidence ≥ 70% were considered for the final ensemble. 

Accuracy, prediction volume, and reliability were analyzed separately for Buy and Sell 

signals. 

Table 1. Model Accuracy by Confidence Range (Grouped) 

Model 
Name 

Confidence 

Range 

Buy only Sell only 

Total buy Correct Accuracy 

(%) 

Total sell Correct Accuracy 

(%) 

XG 
Boost 

51-60% 150 76 50.66 56 26 46.42 

61-70% 140 79 56.42 47 26 55.31 

71-80% 156 77 49.35 46 26 56.52 

81-90% 140 78 55.71 72 36 50.00 

91-100% 156 112 71.79 99 68 68.68 

LightGB

M 

51-60% 343 177 51.60 87 34 39.08 

61-70% 199 99 49.74 83 44 53.01 

71-80% 87 44 50.74 66 31 46.96 

81-90% 25 14 56.00 38 21 55.26 

91-100% 70 68 97.14 37 29 78.37 

Random 

Forest 

51-60% 428 211 49.29 161 80 49.68 

61-70% 210 112 53.33 107 54 50.46 

71-80% 53 25 47.16 34 16 47.05 

81-90% 16 10 62.50 4 4 100.00 

91-100% 59 59 100.00 18 18 100.00 

SVM 

51-60% 999 522 52.25 341 160 46.92 

61-70% 49 42 85.71 64 25 39.06 

71-80% 2 2 100.00 0 0 NaN 

81-90% 0 0 NaN 0 0 NaN 

91-100% 0 0 NaN 214 107 50.00 

Logistic 

Regressi

on 

51-60% 659 352 53.41 96 45 46.87 

61-70% 142 85 59.85 16 13 81.25 

71-80% 31 28 90.32 6 5 83.33 

81-90% 1 1 100.00 0 0 NaN 

91-100% 0 0 NaN 0 0 NaN 
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Table 1 summarizes model accuracy across different confidence ranges (from 51% to 

90%), separated into Buy-only and Sell-only predictions. The results show that accuracy 

generally improves with higher confidence levels, supporting the use of confidence as a 

filter in trading decisions. Models like XGBoost, LightGBM, and Random Forest 

demonstrate steady performance increases as confidence increases. 

Table 2. Model Decision Comparison at ≥70% Confidence 

Model Name 

Buy only Sell only 

Total buy Correct Accuracy 

(%) 

Total sell Correct Accuracy 

(%) 

XGBoost 452 267 59.07 217 130 59.90 

LightGBM 182 126 69.23 141 81 57.44 

Random 

Forest 
138 99 71.73 60 41 68.33 

SVM 2 2 100.00 2 2 100.00 

Logistic 

Regression 
32 29 90.62 22 18 81.81 

 

Table 2 compares the accuracy of different models in making Buy and Sell decisions 

when filtered by confidence levels of 70% or higher. The results highlight that Random 

Forest achieved the most balanced and accurate performance, while Logistic Regression 

and SVM showed high precision in smaller subsets. This evaluation guided the selection of 

base and meta models for the final ensemble. 

3.7  Training Process 

The model training followed a two-stage procedure 

1) Base Model Training: 80:20 chronological split, with z-score normalization  

applied to numerical features. Cross-validation was used where applicable. 

2) Meta-Model Training: Trained in out-of-fold predictions to avoid data leakage. 

3.8  Model Evaluation Metrics 

To ensure the robustness and practical effectiveness of the model, the evaluation was 

conducted from multiple perspectives, combining standard classification metrics, 

confidence-level analysis, and financial performance indicators. 

3.8.1 Classification Performance 

The model was assessed using 

1) Accuracy – Overall correctness of predictions 
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2) Precision – Accuracy of Buy signals (low FP = higher precision) 

3) Recall – Ability to capture actual Buy instances (low FN = higher recall) 

4) F1-score – Harmonic mean of precision and recall  

These metrics were calculated using a confusion matrix (TP, TN, FP, FN) to measure 

classification quality. 

3.8.2 Confidence-Based Signal Analysis 

Predictions were grouped by confidence thresholds (e.g., 0.7, 0.8, 0.9) to 

1) Analyze how accuracy varies across different confidence levels 

2) Support filtering decisions for high-confidence trading actions 

3.8.3 Financial Performance Evaluation 

A back testing simulation was conducted using real market scenarios to evaluate 

economic viability. Key financial metrics included: 

1) Profit Factor – Ratio of average profit to average loss 

2) Maximum Drawdown – Largest portfolio declines from peak to trough 

3) Sharpe Ratio – Return per unit of risk above the risk-free rate 

3.8.4  Buy/Sell Model vs. Binary Classification 

  A comparative analysis was performed between 

1) separate Buy/Sell prediction strategy, and 

2) A binary classification model predicting direction to determine which yields 

higher accuracy and stability. 

3.9 Expected Return Calculation 

To connect prediction quality with decision-making, the expected return was calculated 

using probability theory 

( ) i iE R P R=   

In binary trading (fixed reward, full loss), this becomes 

( ) (1 ) ( 1)winE R p R p=  + −  −  

Where: 

p  = model’s win probability 

winR  = reward per win (e.g., 0.8), loss = -1 

This equation helps determine if the model is statistically profitable 

3.10 Remaining Capital Simulation 

The final capital after multiple trades was estimated using: 
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Re (1 r E(R))nmaining Capital C=  +   

Where: 

C  = Initial capital 

r  = % of capital invested per trade 

( )E R = Expected return 

n  = Number of trades 

This simulates the long-term impact of the model’s decisions under controlled money 

management. 

4  Results 

4.1 Model Performance Evaluation 

The performance of the ensemble model was evaluated in both Buy and Sell signal 

scenarios using classification metrics including Accuracy, Precision, Recall, and F1-score 

 

Table 3. Comparison of baseline models and LSTM-enhanced models on Buy signals 

 

Table 4. Comparison of baseline models and LSTM-enhanced models on Sell signals 

 
 

From table 3 and table 4 show that M1 outperformed M2 in Sell signals, while M2 

achieved slightly better precision in Buy signals. 

 

4.2 Confidence-Level Analysis and Equity Performance 

The model's predictions were segmented by confidence thresholds (≥0.6 to ≥0.9) to 

analyze how accuracy and profitability change with prediction certainty. 
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Table 5. Profitability comparison across different confidence levels 

 

 

Fig 9. Equity curve comparison across confidence thresholds in Binary Options trading 

strategy 

From Table 5 and Figure 9 show the higher confidence generally leads to more accurate 

and stable trade. The best trade-off between profit and risk was achieved at Confidence ≥ 

60%, with a Profit Factor of 1.633 and the highest total return. At very high confidence 

levels (≥ 90%), the number of trades was lower, leading to reduced profit despite high 

reliability 

4.3 Trading Strategy Comparison 

The study compared different ways of combining Buy and Sell models to find the most 

profitable strategy. 

 

 



 

 

 

 

 

 

 

 

Data Science and Engineering (DSE) Record, Volume 6, issue 1.  310 

 

Table 6. Performance comparison of model combinations for classifying Buy and Sell 

Model Usage 

Strategy 

Accuracy 

(%) 

Total P&L (USD) Maximum 

Drawdown (USD) 

Profit 

Factor 

Unified model for 

both Buy and Sell 

50.66 787,846 -18,000 1.264 

Buy M1 + Sell M1 64.48 236,580,925 -18,000 1.510 

Buy M2 + Sell M2 66.27 22,110,710 -18,000 1.522 

Buy M1 + Sell M2 59.68 22,312,654 -8,424 1.238 

Buy M2 + Sell M1 67.55 3,320,315,189 -18,000 1.633 

Table 7. Performance metrics at different confidence thresholds 

 

This table summarizes key trading performance indicators—including accuracy, total 

profit/loss, annualized return, drawdown, and profit factor—based on varying model 

confidence thresholds (≥ 60% to ≥ 90%). 

 

Fig 10. Equity curve comparison by confidence threshold (Buy: M2, Sell: M1) 
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This graph visualizes the cumulative account balance over time for different minimum 

confidence levels, demonstrating that moderate thresholds (≥ 60%) yield the strongest and 

most consistent growth. 

4.4 Yearly Performance Stability 

Annual returns were analyzed to evaluate the model's performance across different 

market conditions from 1986–2025. Figure 11 displays the year-by-year return generated 

by the trading strategy. Most years yielded positive returns (green bars), while only a few 

years experienced losses (red bars). The strategy shows consistent profitability across 

decades, with peak performance during the early 2000s and stability in recent years despite 

market fluctuations. 

 

Fig 11. Annual return (%) by year from 1986 to 2025 

The experimental results demonstrate that applying a confidence threshold to model 

predictions significantly improves trading performance. By filtering out low-confidence 

signals, the strategy can focus on high-probability trades, leading to increased accuracy, 

profitability, and reduced drawdown. Integrating LSTM into the ensemble architecture 

enhanced the precision of Buy signals, as LSTM effectively captures temporal patterns in 

financial time series. However, its contribution to Sell signal accuracy was more limited, 

indicating that LSTM may be more effective for detecting upward trends than downward 

ones. Among various model combinations tested, the strategy that combined Buy (M2) and 

Sell (M1) yielded the best overall performance. This configuration achieved the highest 

accuracy, profit factor, and total return, making it the most balanced and robust choice for 

practical deployment. 
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Finally, long-term backtesting from 1986 to 2025 confirmed that the model is stable 

across market cycles and performs consistently in both volatile and stable conditions. These 

findings suggest that the proposed ensemble model is not only technically sound but also 

adaptable and financially viable for real-world Binary Options trading. 

5. Conclusion and Recommendations 

5.1 Summary of the Research 

This research aimed to develop an ensemble classification model to predict the next-day 

direction of EUR/USD price movements for Binary Options trading. The final architecture 

integrates multiple base models XGBoost, LightGBM, Random Forest, and LSTM with a 

Logistic Regression meta-learner using a stacking approach. Additionally, the strategy 

separates Buy and Sell signal prediction into independent pipelines to enhance decision 

precision. The model was evaluated using both statistical classification metrics and 

financial performance indicators. Results showed that filtering confidence by prediction 

significantly improved profitability and stability. The best-performing strategy combined 

Buy (M2: Stacking + LSTM) and Sell (M1: Stacking only), yielding the highest accuracy 

and return with manageable risk. 

 

Fig 8. Final model architecture with feature engineering and separate Buy/Sell 
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This diagram illustrates the full workflow from dataset input, feature generation via 

Random Forest, parallel base learner training (with and without LSTM), stacking with a 

meta-learner, and final classification into Buy/Sell decisions. 

5.2 Discussion of Findings 

The research supports several key conclusions: 

1) Stacking ensembles outperform individual models, especially when combined with 

LSTM for Buy signals. 

2) Confidence thresholds serve as an effective filtering mechanism, directly 

correlating with improved accuracy and profit factor. 

3) Separate Buy/Sell classification outperforms binary classification, as it allows each 

model to specialize in detecting upward or downward movements. 

4) The model remained robust across historical data (1986–2025), indicating 

adaptability to long-term market cycles. 

However, the contribution of LSTM to Sell signals was limited, suggesting that 

downward price patterns may be less temporally dependent or harder to capture via 

sequential modeling. 

5.3 Research Limitations 

Despite promising results, this study has several limitations: 

1) The model assumes fixed return rates in Binary Options trading, which may 

differ in real platforms. 

2) The LSTM model was implemented using basic architecture. More advanced 

options (e.g., Bi-LSTM, attention mechanisms) were not explored. 

3) The study did not incorporate external or fundamental factors, such as news or 

macroeconomic data, which can influence short-term price movements. 

4) Computational complexity increases significantly with stacking and deep learning, 

which may hinder deployment in latency-sensitive environments. 

5.4 Recommendations for Future Research 

To expand on the current findings, future research could explore: 

1) Integrating news sentiment analysis or economic event tagging to enrich input 

features. 

2) Testing real-world deployment with live data on trading platforms for risk control 

validation. 

3) Comparing with reinforcement learning or agent-based systems for adaptive 

decision-making. 
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4) Optimizing the architecture of LSTM or incorporating attention-based models 

(e.g., Transformer) to better capture long-term dependencies. 

5) Extending the framework to multi-asset portfolios or multi-class prediction, 

such as predicting price range or volatility zone. 

The author would like to acknowledge the use of ChatGPT (developed by OpenAI) 

as a writing assistant during the drafting of this report. ChatGPT was used to help structure, 

summarize, and improve the clarity of the text. All interpretations and conclusions remain 

the sole responsibility of the author. 
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