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Abstract. The work presents the application of complex-valued deep 
learning for classifying microbial organisms, highlighting its significance 
for rapid pathogen identification crucial in healthcare. It explores the 
efficiency of complex-valued neural networks over traditional real-valued 
networks, focusing on efficiency, computational resource usage, and 
accuracy in genome sequencing classification. The research employs 
theoretical analysis and empirical testing, comparing the performance of 
complex-valued and real-valued models. Findings indicate that complex-
valued CNNs offer advantages in encoding genomic sequences and 
processing efficiency. The study’s significance lies in its potential to 
advance pathogen classification methods, offering insights into the 
practical trade-offs between model complexity and computational 
efficiency, and contributing to the development of more effective tools for 
epidemic prevention and control. 
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1 Introduction 

Identifying and classifying microbial organisms plays an important role in 

healthcare, especially in the prevention and management of epidemics. The rapid and 

precise identification of pathogens enables healthcare systems to implement timely 

and effective measures to prevent the spread of infectious diseases. The process of 

identifying and classifying microbes, including viruses, involves genomic sequencing 
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and bioinformatics analysis. This approach allows for accurately detecting pathogens, 

understanding their genetic makeup, and tracking their mutations and evolution. 

Accurate identification is essential for understanding the epidemiology of infectious 

diseases, tracking the spread of pathogens, and identifying new or emerging infectious 

agents [1]. 

Genome sequencing has become a pivotal tool in detecting and managing 

pathogens, revolutionizing infectious disease surveillance and response approaches. 

The advent of genome sequencing technologies has enabled rapid, accurate 

identification of viruses, even in the early stages of an outbreak. For instance, during 

the SARS-CoV-2 pandemic, the lack of routine viral genomic surveillance initially 

allowed the virus to spread unchecked in the U.S., highlighting the critical role of 

genomic data in tracking virus evolution and spread [2]. Genome sequencing provides 

detailed insights into the genetic makeup of viruses, facilitating the tracking of 

mutations and the emergence of new variants. This capability is crucial for 

understanding the dynamics of virus transmission and identifying areas lacking in 

surveillance, as demonstrated by the study on Aedes-borne viruses like Zika and 

Chikungunya in the Americas [3]. There are several genome sequencing techniques, 

such as Next-Generation Sequencing (NGS) [4] and Whole-Genome Sequencing 

(WGS)[5], and a variety of applications including diagnostic microbiology[6], crop 

improvement[7], and pathogen monitoring[8]. 

This research proposes a resource-efficient method for classifying the 

organism based on genome sequencing. Machine learning is widely used to assist the 

sequencing process and is an important tool in genome sequencing. A variety of 

machine learning is proposed to assist the task, ranging from supervised learning and 

unsupervised learning to deep learning. Despite advancements, genome sequencing 

can be expensive and time-consuming [9], which can be a huge challenge in this field 

of study. The strategy of this work is to use complex-value based machine learning. 

Complex numbers are a type of number that extends the traditional concept of 
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numbers to a new dimension of information. They consist of two parts: a real part and 

an imaginary part. This structure allows operations that are impossible with real 

numbers, enabling them to represent data in another form and solve a broader range 

of mathematical problems. Consequently, the complex number can enhance the 

machine learning model in terms of efficiency and resource consumption. 

2 Literature Review 

2.1 Microbial Organism Classification 

Microbial Organism Classification is a critical field in microbiology that 

involves categorizing microorganisms based on various characteristics, including 

genetic, functional, and phenotypic traits. This classification is essential for 

understanding microbial diversity, ecology, and the specific roles microbes play in 

different environments, including their impact on human health. Various methods 

have been developed, each with its unique approach and application. The 

classification can be based on metabolite contents. This approach involves classifying 

microorganisms based on the volatile organic compounds (VOCs) they emit. 

Abdullah et al. (2019) utilized this method to classify microorganisms into their 

pathogenicity based on VOCs, using data from the KNApSAcK and mVOC 

databases. On the other hand, function-based classification is based on the functional 

repertoire of microorganisms rather than just phylogenetic markers. Zhu et al. (2015) 

proposed a classification scheme, functional-repertoire similarity-based organism 

network (FuSiON). This technique constructs a systemic approach to the organism’s 

function and measures the function. More recent research on microbial organism 

classification is shown in Table 1. 
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Table 1. Summary of recent articles on microbial organism classification 

Year Authors Target Organism Classification 

Techniques 

2023 Qu et al.[10] River microbial communities Ensemble machine learning 
models 

2023 Choudhury et al [11]. Microbial communities in North 
Indian 

rivers 

Iterative K-Means clustering, 
MLAs, 

Random Forest 

2023 Alharbi and Vakanski 
[12] 

Cancer (gene expression analysis) Deep learning-based approaches 

2023 Ahmad et al. [13] Coxiella burnetii in soil Two-phase featureranking, 
SVM, LDA,LR, MLP 

2.2 Complex-Valued Machine Learning 

Complex numbers are a type of number that extend the real numbers by adding 

an imaginary unit, denoted as i, where i2 = −1. A complex number is generally expressed 

in the form a + bi, where a and b are real numbers, and i is the imaginary unit. The real 

part of the complex number is a, and the imaginary part is b. The complex number can 

be represented in various forms for different purposes. The exponential form of a 

complex number is an elegant and powerful way of representing complex numbers, 

utilizing Euler’s formula. The formula connects complex exponentials with 

trigonometric functions. Given a complex number z = a + bi, where a and b are real 

number, we can rewrite the z into its exponential form as z = reiθ where r is the magnitude 

of the complex number r = |z| = √𝑎ଶ  +  𝑏ଶ  and θ is the phase angle θ = arg(z) = 

atan2(b,a). Despite the fact that the complex number can be converted into a 2D vector, 

this process does not incorporate the mathematical correlation between the real and 

imaginary part[14]. Complex numbers are fundamental in various fields, including 

engineering, physics, and applied mathematics, particularly in solving polynomial 

equations that do not have real solutions. 
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Complex-Value Machine Learning is an area in computer science that 

focuses on the application of complex numbers in machine learning algorithms. This 

approach involves using complex numbers and their properties to enhance the learning 

capabilities of algorithms. Unlike real-valued data, complex numbers have both a real 

and an imaginary component, which can be particularly useful in representing 

multidimensional data in a more compact form. The use of complex numbers allows 

for a more detailed representation of data, capturing additional information compared 

to real-valued counterparts. Moreover, machine learning can integrate complex values 

into the computational model to increase the capabilities. Table 2 displays the 

summary of the complex-number related techniques. There are two forms of 

implementation. One of them is to represent the data in the complex number format. 

For example, electroencephalography (EEG) signals can be transformed into the 

complex-value format to use as input for the model[15]. The other aspect of the 

implementation is the to use as part of the machine learning model, such as artificial 

neural network or deep learning. Dramsch et al. studied non-stationary physical data, 

seismic data, using complex-valued deep convolutional networks. The complex-

valued deep convolutional networks is a form of convolutional neural networks that 

use the complex value as an additional component. However, there are several 

limitation to the complex-valued machine learning. One of the most important issues 

it that the implementation of complex-valued algorithms can be more challenging than 

traditional real-valued algorithms.



Data Science and Engineering (DSE) Record, Volume 5, issue 1. 174 

 

 
 

 

Table 2. Summary of Articles Utilizing Complex-Value Machine Learning 

Year Authors Title Domain Complex-Value Usage 

2021 Dramsch et al. 
[16] 

Complex-valued neural 
networks for machine 
learning on non-
stationary physical data 

Seismic data Complex-valued machine 
learning 

2021 Wang et al. [17] An efficient specific 
emitter identification 
method based on 
complex-valued neural 
networks and network 
com- 

pression 

Specific emitter 
identification data 

Complex-valued machine 
learning 

2021 Zhang et al.[18] An optical neural chip 
for implementing 
complexvalued neural 
network 

Benchmark data 
(XOR logic gate, 
iris[19], Circle 
and Spiral, and 

MNIST[20]) 

Complex-valued machine 
learning 

2016 Peker [21] An efficient sleep 
scoring system based on 
EEG signal using 
complex-valued 
machine learning 
algorithms 

Medical Data representation and 
complex-valued machine 
learning 

2012 Savitha et al. 
[22] 

Fast learning circular 
complex-valued extreme 
learning machine 
(CCELM) for real-
valued classification 
problems 

Benchmark 
data[23] 

Complex-valued machine 
learning 
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3 Complex-Valued Deep Learning for Microbial Organism 

Classification 

3.1 Complex-Valued Artificial Neural Network 

Artificial Neural Networks (ANNs) are a cornerstone of modern machine 

learning, drawing inspiration from the biological neural networks that constitute the 

mammal nervous system [24]. An ANN is a computational model mimicking how 

neurons interact in the human brain, enabling the machine to learn from observational 

data. It has been used to recognize patterns and solve complex problems in data analysis, 

such as image recognition and natural language processing [25]. 

One of the successful tasks is a comparative study for classifying quantum 

states that have demonstrated that complex-valued neural networks perform 

significantly better than traditional, witness-based methods[26]. And another study 

about PolSAR image classification[27] models mentioned that they are typically based 

on real-valued CNNs (RV-CNN). This means the models’ parameters, inputs, and 

outputs are all real-valued. However, since the raw data of PolSAR images are generally 

complex-valued, it is impossible to input the complex-valued raw data into the real-

valued model directly, but complex-valued neural network could use it directly. Its 

experimental results reveal that the method proposed in its study is much better than the 

real-valued model despite having comparable parameters. 

There are several key components of the ANNs: 

– Neurons. These are the basic units of computation in an ANN. Each neuron 

   receives input, processes it, and passes on its output to the next layer of 

neurons. 

– Layers. These are a series of interconnected neurons. They function as the 

   primary structural and computational elements within an ANN [28]. 

– Weights.Weights represent the strength of the connection between neurons. 

There is a special type of weight called bias. The bias is added to fine-tune the 

output. 
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– Activation Functions. The activation function is a decision function to 

determine whether it should be activated. Common activation functions 

include sigmoid, tanh, ReLU (Rectified Linear Unit), and Softmax. A 

different activation function is used for different tasks [29]. 

– Loss Function. This function measures the difference between the network’s 

   prediction and target values. It guides the training process by indicating how 

   far off the predictions are. Common loss functions include Mean Squared 

   Error (MSE), Mean Absolute Error (MAE), and Cross-Entropy Loss [30]. 

The operation of an ANN can be broadly divided into two main phases: 

training 

and recalling (also known as inference or prediction). The training phase is a process to 

determine the weights of the model. Normally, it involves determining the differences 

between the target and actual values and adjusting (updating) the weight. The training 

phase is computationally intensive and can take considerable time, especially for large 

networks and datasets. The famous training algorithm is the back-propagation algorithm 

[31]. The other approach to determine the weight is to use optimization like the Adam 

optimization algorithm [32]. In contrast, the recalling phase is a straightforward process 

to determine the result from the input and the weight without the weight update. The 

recalling phase is generally faster than the training phase, which involves 

straightforward computations through the already-trained network. 

The following two formulas represent forward propagation of complex-valued 

neural networks, 

 which is essentially identical to real-valued neural networks. 

                 (1) 

                                          (2) 

When z denotes the output of an inactivated layer, it represents the state before 

the activation function is applied but after forward propagation from the previous layer. 
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a denotes the activated layer, and w denotes the weights associated with the neural 

network connections. The symbol σ is introduced to represent the activation function, 

details of which will be mentioned in later sections. 

The index notation on the lower right of each variable is to provide a clearer 

representation of variables. z[l,k] denotes the inactivated state of node k in layer l, a[l,k] 

denotes the activated value of node k in layer l, and w[l,j,k] represents the weights 

associated with the connection from node k in the activated layer of the previous l − 1 

layer to branch j in layer l. 

Complex-Valued Split-SoftMax Layer. In machine learning, particularly in neural 

networks, the SoftMax layer plays an important role in classification tasks. The SoftMax 

function is an activation function in a neural network model, especially in the output 

layer for multiclass classification problems. The general idea of the function is to read 

a vector of k and generate a vector of K real values that sum to 1. The result of the 

SoftMax function can be interpreted as probability. Given a vector z ∈ Rk, the SoftMax 

function σ(zk) for the k-th element is defined as: 

  for k = 0,...,K − 1 (3) 

Where K is the number of classes, and the output of the SoftMax function is a 

probability distribution over K classes. On the other hand, Split-SoftMax function [33] 

is an extension of the SoftMax function to support complex values.The input of the layer 

is in a complex-valued format, and the final output is still a vector of probability. The 

complex-valued output of the last layer is converted into two real-valued outputs, one 

for the real parts and one for the imaginary parts. Then, SoftMax is applied to both 

outputs separately to get the probabilities of each class, and then the separate pairs are 

recombined to form a complex number again. Given a vector z ∈ C1×K, the Split-
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SoftMax function σ(zk) for the k-th element is defined as:

  (4) 

The Split-SoftMax [34] function considers real and imaginary parts. The 

advantage is concatenating 2n real-valued output nodes to n complex-valued output 

nodes, which may provide a more compact representation of complex relationships, 

potentially reducing the dimensionality of the output space, a complexvalued output 

vector here of C1×K is equivalent to a real-valued output vector of R1×2K to a real-

valued machine learning models’ point of view. 

 

Fig.1.  Complex Split-Softmax Layer’s output (left) to a real-valued machine learning models’ 

point of view to interpret is probabilities (right). 

However, its disadvantage is the number of target classes must be even. If the 

number of target classes is odd, you could introduce a new dummy target class, which 

would not have any input vectors associated with it. This would ensure that the number 

of target classes is even. The traditional cross-entropy loss function for real-valued 

neural networks’ classification task is. 
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                     for k = 0,...,K – 1                   (5) 

When C represents the total loss, which is calculated by summing over all the classes. 

yu is the true label for class u (either 0 or 1), and aL is the predicted probability of that 

class (a value between 0 and 1) at the final layer of the neural network. ln() represents 

the natural logarithm function. The cross-entropy loss function aims to penalize the 

model for predicting a low probability for the true class and a high probability for other 

classes and to encourage the model to assign high probabilities to the true class. The 

goal of  training the neural network is to minimize the value of C by adjusting the 

weights and biases of the model. 

   for k = 0,...,K 

– 1 (6) 

డ஼

డ௭[೗,ೕ]
= 𝑎[௅,ఫ] − 𝑦[ఫ]തതതതതതതതതതതതതത     (7) 

The two formulas above are a modified version of the cross-entropy loss 

function called “split-cross-entropy loss function” for complex-valued neural 

networks and is R-derivative respectively. In this modified version, the loss function 

considers both the real and imaginary parts of the output and treats them as a separate 

class. The natural logarithm function is applied to both the real and imaginary parts 

of the predicted output, and the loss for each class is the sum of the products of the 

real and imaginary parts of the true label and the logarithms of the corresponding real 

and imaginary parts of the predicted output. Finally, the overall loss is the negative 

sum of the losses for all the classes. This modified loss function is used to train the 

complex-valued neural network, to minimize the difference between the predicted 

output and the true label. The reason why split-cross-entropy loss function is 

multiplied by -2 instead of -1 is to not having any constant multiplication at equation 

7, otherwise it have to be multiplied by 0.5 or divided by 2. 
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Complex-valued back-propagation One of the widely known activation 

functions in classical real-valued neural networks is the hyperbolic tangent 

(tanh) function. While its output is bounded for all real numbers, it loses this 

property in the complex domain and includes singularities (e.g., at inputs like 

−0.5πi,0.5πi,1.5πi,2.5πi,...). Consequently, it is not advisable to employ tanh 

as an activation function in complex-valued networks. An analytic 

(holomorphic) function unavoidably has unbounded points, as per Liouville’s 

theorem[35], unless it is a constant function, rendering it impractical as it 

yields the same output irrespective of the input. Therefore, non-analytic (non-

holomorphic) activation functions are preferred. However, traditional back-

propagation, designed for real-valued networks, is effective only for 

holomorphic or analytic functions. The ensuing eight equations correspond to 

the real-valued Adaptive Moment Estimation back-propagation algorithm 

(ADAM) [36], which does not perform optimally in complex-valued neural 

networks. 

డ஼

డ௕[೗,ೕ]
=

డ஼

డ௭[೗,ೕ]
 (8) 

𝑣௕ [௟,௝]௡௘௪
 =   𝛽ଵ𝑣௕ [௟,௝]௢௟ௗ

+ (1 − 𝛽ଵ)
డ஼

డ௕[೗,ೕ]
 (9) 

𝑠௕ [௟,௝]௡௘௪
 =   𝛽ଶ𝑠௕ [௟,௝]௢௟ௗ

+ (1 − 𝛽ଶ)(
డ஼

డ௕[೗,ೕ]
)ଶ) (10) 

𝑏[௟,௝]௡௘௪
 =  𝑏[௟,௝]௢௟ௗ

− η

⎝

⎜
⎛

ೡ್[೗,ೕ]೙೐ೢ

భషഁభ
೟

ඨ
ೞ್[೗,ೕ]೙೐ೢ

భషഁమ
೟ ାఌ

⎠

⎟
⎞

 (11) 

డ஼

డௐ[೗,ೕ,ೖ]
=

డ஼

డ௕[೗,ೕ]
𝑎[௟ିଵ,௞] (12) 

𝑣ௐ[௟,௝,௞]௡௘௪
 =   𝛽ଵ𝑣ௐ[௟,௝,௞]௢௟ௗ

+ (1 − 𝛽ଵ)
డ஼

డௐ[೗,ೕ,ೖ]
 (13) 
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𝑠ௐ[௟,௝,௞]௡௘௪
 =   𝛽ଶ𝑠ௐ[௟,௝,௞]௢௟ௗ

+ (1 − 𝛽ଶ)(
డ஼

డௐ[೗,ೕ,ೖ]
)ଶ (14) 

𝑊[௟,௝,௞]௡௘௪
 =  𝑊[௟,௝,௞]௢௟ௗ

− η

⎝

⎜
⎛

ೡೈ[೗,ೕ,ೖ]೙೐ೢ

భషഁభ
೟

ඨ
ೞೈ[೗,ೕ,ೖ]೙೐ೢ

భషഁమ
೟ ାఌ

⎠

⎟
⎞

 (15) 

For complex-valued backpropagation, the loss function remains real-valued, 

serving to minimize empirical risk throughout the learning process. Although there’s a 

minor adjustment to accommodate complex-valued inputs, the primary challenge in 

Complex-Valued Neural Networks (CVNN) lies in utilizing effective training methods. 

A problem emerges during the implementation of the learning algorithm, commonly 

referred to as backpropagation. Optimizing the network’s parameters demands the use 

of gradients or any partial-derivative-based algorithm. However, standard complex 

derivatives are defined only for holomorphic or analytic functions. Fortunately, 

Wirtinger calculus [37] extends the concept of complex derivatives, encompassing 

holomorphic functions as a specific case. This extension enables the realization of 

”complex-valued backpropagation” for both holomorphic and non-holomorphic 

functions under Wirtinger Calculus. Presented here are eight equations corresponding 

to the Complex-Valued Adaptive Moment Estimation, or ”CVADAM” [38] 

backpropagation algorithm, which operates effectively on complex-valued neural 

networks. Remind that the cost function in the complex-valued neural network, denoted 

as C, remains real-valued. 

డ஼

డ௕[೗,ೕ]
=

డ஼

డ௭[೗,ೕ]
 (16) 

𝑣௕ [௟,௝]௡௘௪
 =   𝛽ଵ𝑣௕ [௟,௝]௢௟ௗ

+ (1 − 𝛽ଵ)
డ஼

డ௕[೗,ೕ]
 (17) 

𝑠௕ [௟,௝]௡௘௪
 =   𝛽ଶ𝑠௕ [௟,௝]௢௟ௗ

+ (1 − 𝛽ଶ)|
డ஼

డ௕[೗,ೕ]
|ଶ (18) 
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𝑏[௟,௝]௡௘௪
 =  𝑏[௟,௝]௢௟ௗ

− η

⎝

⎜
⎛

ೡ್[೗,ണ]೙೐ೢ
തതതതതതതതതതതതതതതത

భషഁభ
೟

ඨ
ೞ್[೗,ೕ]೙೐ೢ

భషഁమ
೟ ାఌ

⎠

⎟
⎞

 (19) 

డ஼

డௐ[೗,ೕ,ೖ]
=

డ஼

డ௕[೗,ೕ]
𝑎[௟ିଵ,௞] (20) 

𝑣ௐ[௟,௝,௞]௡௘௪
 =   𝛽ଵ𝑣ௐ[௟,௝,௞]௢௟ௗ

+ (1 − 𝛽ଵ)
డ஼

డௐ[೗,ೕ,ೖ]
 (21) 

𝑠ௐ[௟,௝,௞]௡௘௪
 =   𝛽ଶ𝑠ௐ[௟,௝,௞]௢௟ௗ

+ (1 − 𝛽ଶ)|
డ஼

డௐ[೗,ೕ,ೖ]
|ଶ (22) 

𝑊[௟,௝,௞]௡௘௪
 =  𝑊[௟,௝,௞]௢௟ௗ

− η

⎝

⎜
⎛

ೡೈ[೗,ണ,ೖ]೙೐ೢ
തതതതതതതതതതതതതതതതതതതത

భషഁభ
೟

ඨ
ೞೈ[೗,ೕ,ೖ]೙೐ೢ

భషഁమ
೟ ାఌ

⎠

⎟
⎞

 (23) 

Alternatively, you have the option to separately apply the ADAM algorithm 

to the real and imaginary components. Presented below are eight equations associated 

with the Complex (Split) Separable Adaptive Moment Estimation, often referred to as 

”CSADAM” or ”splitADAM.” While the comparison of performances between 

”CVADAM” and ”CSADAM” is yet to be tested, you can choose for either of these 

methods to train Complex-Valued Multilayer Perceptrons (CVMLPs). 

డ஼

డ௕[೗,ೕ]
=

డ஼

డ௭[೗,ೕ]
 (24) 

𝑣௕ [௟,௝]௡௘௪
 =   𝛽ଵ𝑣௕ [௟,௝]௢௟ௗ

+ (1 − 𝛽ଵ)
డ஼

డ௕[೗,ೕ]
 (25) 

𝑠௕ [௟,௝]௡௘௪
 =   𝛽ଶ𝑠௕ [௟,௝]௢௟ௗ

+ (1 − 𝛽ଶ)(ℜ ൜
డ஼

డ௕[೗,ೕ]
ൠ

ଶ

+ ℑ ൜
డ஼

డ௕[೗,ೕ]
ൠ

ଶ

𝑖) (26) 
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𝑏[௟,௝]௡௘௪
 =  𝑏[௟,௝]௢௟ௗ

− η

⎝

⎜
⎛
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೟

ඨ
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ൠ
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೟
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}
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𝑖

⎠

⎟
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 (27) 

డ஼

డௐ[೗,ೕ,ೖ]
=

డ஼

డ௕[೗,ೕ]
𝑎[௟ିଵ,௞] (28) 

𝑣ௐ[௟,௝,௞]௡௘௪
 =   𝛽ଵ𝑣ௐ[௟,௝,௞]௢௟ௗ

+ (1 − 𝛽ଵ)
డ஼

డௐ[೗,ೕ,ೖ]
 (29) 

𝑠ௐ[௟,௝,௞]௡௘௪
 =   𝛽ଶ𝑠ௐ[௟,௝,௞]௢௟ௗ
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ൠ
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𝑖) (30) 

𝑊[௟,௝,௞]௡௘௪
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− η
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⎠

⎟
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 (31) 

 

Convolutions Neural Network on Genomics 

Although convolutions neural networks (CNNs) [39] have been applied to a 

variety of computational genomics problems, there remains a large gap in our 

understanding of how they build representations of regulatory genomic sequences. 

Here, we perform systematic experiments on synthetic sequences to reveal how CNN 

architecture, specifically convolutional filter size and max pooling, influences the 

extent to which sequence motif representations are learned by first layer filters. CNNs 

are designed to extract features from nucleotide and amino acids sequences. There is 

a research mentioned about a deep learning genome classification strategy targeting 

SARS-CoV-2 which is capable of working with 31,029 bp (base pairs), and such 

convolutions neural network is proven to be an effective way to correctly classify 

viruses, especially SARS-CoV-2, into their realms, families, genera, and subgenera. 

Pooling is an important, if not necessary operation in Convolutional Neural 

Networks (CNNs) for several reasons, it reduces the spatial dimensions of the input 
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volume. This is crucial for reducing the computational complexity of the network and 

controlling overfitting. Max pooling and average pooling are frequent pooling 

methods in Real-valued Convolutional Neural Networks (RVCNNs). Average 

pooling is straightforward for both real-valued and complex-valued CNNs. But for 

real-valued CNNs’ max pooling, it is not straightforward for complex-valued CNNs’. 

There are at least three ways to extend it here. First, split max pooling for complex-

valued convolutional neural networks involves applying max pooling separately to 

the real and imaginary parts of the complex-valued activations. Second, magnitude 

max pooling is a pooling operation applied to complex-valued matrix where for each 

submatrix, the complex number with the highest magnitude (absolute value) is chosen. 

Third, real-part max pooling involves applying max pooling only to the real part of 

the complex-valued activations, then the imaginary part of such value is transferred. 

The corresponding imaginary part is also considered, serving as a tiebreaker in case 

of multiple maximum values in the real part. 

 

Fig. 2. An example of 2 × 2 Average Pooling 
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Fig. 3. An example of 2 × 2 Split Max Pooling 

 

Fig. 4. An example of 2 × 2 Magnitude Max Pooling 
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Fig. 5. An example of 2 × 2 Real-Part Max Pooling 

3.2  Workflow 

 

This study presents a pipeline for microorganism classification from 

nucleotides and amino acids. The working strategy of this research can be depicted in 

three stages. The first stage is to prepare the data for the analysis. Secondly, a 2D 

CNN is either trained or uses predefined-weight, or randomly generated to capture the 

structure of the data. Finally, the knowledge extracted by the CNN is used as the initial 

weight and fine-tuning for a better result firm. Figure 6 provides a visual 

representation of a three-stage process of the proposed method. 
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Fig. 6. Overall concept of the proposed method 

3.3  Data Preprocessing 

 

The process of preparing data for complex-valued deep learning models 

involves several distinct yet interconnected steps, each of which is crucial for ensuring 

that the data is appropriately formatted and encoded for the learning task at hand. 

Figure 6 shows the visualization of the process. Initially, the PSK Constellation 

Encoding step is applied to the dataset. This involves encoding each nucleotide 

sequence which is composed by nucleotide bases such as A(adenine), C(cytosine), 

G(guanine), or T(thymine), into a complex number. The inspiration for this encoding 

comes from modulation techniques commonly used in digital communication systems, 

such as Phase-Shift Keying (PSK) constellation encoding, Amplitude-Phase-Shift 

Keying (APSK) constellation encoding, or Quadrature Amplitude Modulation (QAM) 

constellation encoding. These methods represent information as different phases of a 

carrier signal, thereby transforming the data into a format suitable for subsequent 

processing in a deep learning context. Subsequently, the data, which may initially be 

represented as a 1D sequence, undergoes a transformation in the Sequence Reshaping 
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step. This is where the 1D sequences are reshaped into a 2D square format, making 

them compatible for application of convolutional neural networks (CNNs). 

An optional step involves applying the Discrete Fourier Transform (DFT). 

While not crucial, the DFT can expose frequency domain information within the 

signal, which can be instrumental in detecting certain periodic patterns. This step 

underscores the versatility of the preprocessing methods in adapting the data for 

various analytical purposes. Each of these steps plays a vital role in the preprocessing 

pipeline, ensuring 

that the data is optimally prepared for the complex demands of deep learning models 

in bioinformatics, enhancing the accuracy and efficiency of the models used for 

analysis. 
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Fig. 7.  Real Part (Up) and Imaginary Part (Down) of a Processed Nucleotide Sequence from 

a bacterium after encoding, resizing, and reshaping from 1D to 2D 

 

Fig. 8. PSK-based constellation encoding for nucleotides 
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3.4 Model Pre-Training 

2D CNNs are used to find the pattern of the reshaped sequence. The 2D CNN 

is uniquely adept at handling two-dimensional data. The strength of CNNs lies in their 

ability to learn hierarchical features from the data. This capability is particularly 

valuable in signal classification tasks, as it enables the extraction of complex patterns 

and features that may not be immediately apparent. 

3.5 Transfer Learning 

Finally, transfer learning is employed. This technique involves using pre-

trained models to enhance the performance of the current task. In this specific context, 

the features learned by the previously applied 2D CCNN are transferred to a MLP. This 

transfer is not merely a transfer of data but of learned insights and discovered patterns 

that the CNN has extracted from the nucleotide sequences. Once these features are 

integrated into the MLP, it can further refine them and perform more focused organism 

classification tasks. This approach takes advantage of the hierarchical feature extraction 

capabilities of CNNs and the pattern recognition and classification strengths of MLPs. 

MLP undergoes a specialized training process. This training aims to finetune the model 

specifically for organism classification tasks based on nucleotide and amino acid 

sequences. This step involves a detailed optimization of the model’s weights and biases. 

By combining the strengths of CNNs in feature extraction and MLPs in pattern 

recognition and classification, these steps collectively enhance the accuracy and 

efficiency of organism classification based on DNA sequences. The model specifically 

for organism classification tasks based on nucleotide and amino acid sequences. This 

step involves a detailed optimization of the model’s weights and biases. By combining 

the strengths of CNNs in feature extraction and MLPs in pattern recognition and 

classification, these steps collectively enhance the accuracy and efficiency of organism 

classification based on DNA sequences 
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4 Experiments and Result 

4.1 Experimental Setup 

The nucleotides and amino acids sequences to form the dataset is from 8 types 

of bacteria. They are Chlamydia trachomatis[40], Clostridium tetani[41], Escherichia 

coli[42], Lactobacillus bulgaricus[43], Mycobacterium tuberculosis[44], Salmonella 

enterica[45], Streptococcus suis[46], and Vibrio cholerae [47]. All of the dataset is 

retrieved from the National Center for Biotechnology Information (NCBI) 

(https://www.ncbi.nlm.nih.gov/). The number of each sequence is shown in Table 3 

with a total number of 14009 and an average length of 39383. 

Table 3. Number of Nucleotide Sequences 

Organism Alias Number of 

Nucleotide 

Sequences 

Minimum 

Length 

Maximum 

Length 

Average 

Length 

Chlamydia 

trachomatis 

B0 1648  1000  93379  9435.09 

Clostridium tetani B1 2895  1000  99926  23605.11 

Escherichia coli B2 1300  50737  51000  50866.97 

Lactobacillus 

bulgaricus 

B3 1772  35001  61987  46908.80 

Mycobacterium 

Tuberculosis 

B4 1201  43501  55988  48976.26 

Salmonella 

enterica 

B5 1770  50000  50999  50471.01 

Streptococcus suis B6 1955  45008  54948  50145.04 

Vibrio cholerae B7 1538  45006  54995  49364.54 
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This study uses two classes of artificial neural networks to demonstrate the 

proposed method’s performance: multilayer perceptron (MLP) and convolution neural 

network (CNN). Both of the classes are implemented in both real number system and the 

complex value system. Figure 7 displays the overall architecture of CNNs for this article. 

Figure 8a uses the datatype of complex64, which is implemented by Python’s numpy. 

Both the real and imaginary parts of the complex64 are float32. The aliases of the real 

number convolution neural network and complex-value convolution neural network are 

RVCNN and CVCNN, respectively. On the other hand, float32 data type in Figure 8c is 

32-bit single precision floating point real number of Python’s numpy. In Table 4, three 

classes of MLP are displayed. The core differences between each class include the 

activation function and the back-propagation algorithm. RVCNN_0 is a real-valued CNN 

which uses two real-valued channels after PSK encoding, real and imaginary parts, then 

feeds its flatten layer into RVMLP_0. RVCNN_1 is also a real-valued CNN. The 

difference is that it uses two real-valued channel after PSK encoding, magnitude, and 

phase parts, then feed its flatten layer into RVMLP_1. 

Table 4. Architectures of Multilayer Perceptrons 

Parameter  RVMLP_0, RVMLP_1 CVMLP_0  CVMLP_1 

Input length  450  225  225 

Hidden layer count  10  10  10 

Hidden layer length 

(each) 
8 6 6 

Hidden layer Activation 

Function (each) 
ReLU  cardioid  cardioid 

Output length 10 5 5 

Output layer Activation 

Function 
Softmax  Split softmax  Split softmax 

Back-propagation 

Algorithm 
ADAM  CVADAM  CSADAM 
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The performance measurement of this work focuses on resource consumption in 

terms of encoding time and training time. Then, the performance during the training 

process is studied via the loss. Finally, the accuracy of the models is studied. This article 

shows the confusion of the matrix, accuracy, F1, and precision of all classes and all 

models. The formula of the complex cardioid activation function is stated below. 

𝑐𝑎𝑟𝑑𝑖𝑜𝑖𝑑(𝑧) =
ଵା௖௢௦(௔௥௚(௭))

ଶ
𝑧 (32) 

And its CR-derivatives are, which are used in complex-valued backpropagation… 

డ

డ௭
𝑐𝑎𝑟𝑑𝑖𝑜𝑖𝑑(𝑧) =  

ଵା௖௢௦(௔௥௚(௭))

ଶ
+

௜

ସ
 𝑠𝑖𝑛(𝑎𝑟𝑔(𝑧)) (33) 

డ

డ௭̅
𝑐𝑎𝑟𝑑𝑖𝑜𝑖𝑑(𝑧) =

ି௜

ସ
 𝑠𝑖𝑛(𝑎𝑟𝑔(𝑧))(𝑛ො(𝑧))ଶ (34) 

The following term is a normalization of a complex number z. 
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Fig. 9.  Real part(Upper-left), Imaginary Part(Upper-right), Magnitude(Lower-left), and 

Phase(Lower-right) of the complex cardioid activation function 

4.2 Experiment Results 

 

In Table 5 and Table 6, the machine learning CVCNN 0 demonstrates superior 

efficiency in nucleotide encoding and overall processing time, outperforming its real-

valued counterparts RVCNN 0 and RVCNN 1. However, when considering MLP 

models, the model RVMLP 1 exhibits the quickest training time, suggesting greater 

efficiency in certain training contexts. Despite a slightly higher parameter count in 

Complex-Valued MLPs CVMLP 0 and CVMLP 1, these models showcase 

commendable performance, particularly in validation accuracy, indicating better 

generalization to new data. This analysis reveals a nuanced trade-off between speed, 

efficiency, and accuracy, suggesting that the choice between Real-Valued and 

Complex-Valued models should be tailored to specific project requirements in genome 

sequencing classification. 
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(a) Complex-Valued Convolution Neural Network 

 

(b) Real-Valued Convolution Neural Network 

Fig. 10.  Architectures of Convolution Neural Networks 
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Table 5. Comparison of Resource Consumption Between Real-Valued and Complex-Valued 

Convolutional Neural Networks 

Parameter  RVCNN_0  RVCNN_1  CVCNN_0 

Nucleotide Encoding Time 

(seconds) 
718.96  695.33  514.15 

Convolutional Neural Network 

Processing Time (seconds) 
974.19  877.92  787.80 

Total Time Before Sending to 

Multilayer Perceptron 
1693.15  1573.25  1301.95 

Total Real-valued Parameter Count 
23981  23981  24056 

Table 6. Comparison of Resource Consumption Between Multilayer Perceptron Models 

Multilayer Perceptron  RVMLP_0 RVMLP_1 CVMLP_0  CVMLP_1 

Convolutional Neural 

Network 
RVCNN_0  RVCNN_1  CVCNN_0  CVCNN_0 

Convolutional Neural 

Network Processing 

Time (seconds) 

1693.15  1573.25  1301.95  1301.95 

Multilayer Perceptron 

Training Time (seconds) 
5956.47  5385.86  6784.63  8659.23 

Total Training Time 

(seconds) 

7649.62  6959.11  8086.58  9961.18 

Real-valued Trainable 

Parameter Count 
4328  4328  3524  3524 

Final Train Loss 0.7599518  0.8753283  1.2815065  1.2335334 

Final Train Accuracy 0.7074240  0.6665306  0.7466857  0.7568835 

Final Validation 

Accuracy 

0.6823697  0.6509636  0.7118725  0.7030692 
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Figure 8 shows experiments assessing the evolution of the three indicators, 

training loss, training accuracy, and evaluation accuracy, and the number of epochs. 

In Figure 8a, all models show a rapid decrease in training loss as the number of epochs 

increases, which is typical as the model learns from the training data. The loss curves 

begin to plateau as the models approach an optimal state. The relation between 

training accuracy and the number of training epochs is studied in Figure 8c. The 

models appear to converge to a similar accuracy level by the end of the training, with 

minor fluctuations. The complex-valued, cardioid models seem to have a more 

consistent accuracy, whereas the real-valued, ReLU ones fluctuate more. Figure 8c 

displays studies on the relation between evaluation accuracy and a number of training 

epochs. The evaluation accuracy for all models shows less stability than the training 

accuracy, which is common due to the generalization of unseen data. The model 

labeled CVMLP, CVADAM, cardioid seems to have the highest evaluation accuracy, 

suggesting that with the CVADAM optimizer and cardioid activation function is 

particularly effective for this dataset. 

According to Table 7, RVMLP_0 performs well in classifying B0 with high 

true positives but has a significant number of false negatives, mistaking B0 for B6 

frequently. However, the model struggles with B2, B3, B5, B7, particularly B2 and B3, 

where it often confuses them with other classes, suggesting similarities in features, a 

lack of distinctiveness in the learning representation for these species, or RVMLP_0 

lacks the capacities to distinguish these classes. B1, B4, and B6 are classified with high 

accuracy, indicating distinctive features that the model can learn effectively. Table 8 

shows the confusion matrix of the model RVMLP_1. B1, B4, and B5 have a very high 

accuracy, similar to RVMLP_0, while B6 has less accuracy than RVMLP_0. B3 has a 

better performance compared to RVMLP_0, with some confusion with other classes. 

B2 and B7 have poor performance with a lot of confusion with other classes. B2 has no 

true positives, indicating a possible need for reevaluation of the feature representation 

for B2. 
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CVMLP_0 shows strong classification performance for B0 with fewer false 

negatives compared to RVMLP_0 and RVMLP_1 as shown in Table 9 and show the 

highest accuracy among the model for B1. For B2 to B7, the performance varies, with 

some confusion. As shown in Table 10, B0 and B1 perform excellently, especially B0, 

which has the highest accuracy. B3 to B7 have reasonable true positive rates but show 

some confusion with other classes. However, CVMLP_1 has a poor performance for 

B2. 

 

(a) Relation between training loss and number of training epoch 
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(b) Relation between training accuracy and number of training epoch 

 

(c) Relation between evaluation accuracy and number of training epoch 

Fig. 11. Relation between three performance indicators and number of training epochs.
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Table 7. Confusion Matrix for RVMLP_0 

Actual/Predicted  B0  B1  B2  B3  B4  B5  B6  B7 

B0 306 23 0 0 0 0 163 2 

B1 15 820 0 2 0 1 14 17 

B2 1 0 79 105 6 109 10 80 

B3 0 0 72 215 0 91 10 144 

B4 1 0 1 0 352 3 1 2 

B5 1 0 59 89 6 307 4 44 

B6 54 0 0 0 0 0 511 22 

B7 6 0 14 100 1 6 56 278 

Table 8. Confusion Matrix for RVMLP_1 

Actual/Predicted  B0  B1  B2  B3  B4  B5  B6  B7 

B0 298 36 0 13 0 1 135 11 

B1 44 813 0 1 0 3 8 0 

B2 13 1 0 218 0 131 5 22 

B3 30 0 0 376 0 41 24 61 

B4 2 0 0 3 347 5 3 0 

B5 7 2 0 101 0 387 5 8 

B6 121 3 0 2 0 0 449 12 

B7 53 3 0 272 0 28 39 66 
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Table 9. Confusion Matrix for CVMLP_0 

Actual/Predicted  B0  B1  B2  B3  B4  B5  B6  B7 

B0 363 22 0 0 0 0 103 6 

B1 26 842 0 0 0 0 1 0 

B2 0 0 28 230 0 63 5 64 

B3 0 5 10 356 0 28 4 129 

B4 0 0 6 3 347 1 1 2 

B5 0 3 14 222 0 232 4 35 

B6 24 2 0 1 0 0 523 37 

B7 4 2 0 107 0 1 46 301 

Table 10. Confusion Matrix for CVMLP_1 

Actual/Predicted  B0  B1  B2  B3  B4  B5  B6  B7 

B0 393 19 0 2 0 0 70 10 

B1 37 830 0 1 0 0 1 0 

B2 1 0 37 200 5 105 3 39 

B3 0 2 28 334 0 69 3 96 

B4 1 0 1 2 352 314 3 20 

B5 0 1 40 132 0 314 3 20 

B6 82 1 0 2 0 0 435 67 

B7 13 1 4 149 0 4 30 260 
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5  Conclusion and Future Works 

The conclusion section of the article on complex-valued deep learning for 

microbial organism classification highlights the nuanced trade-offs encountered in the 

study between efficiency, accuracy, and speed. The experiments demonstrated that 

complex-valued convolutional neural networks (CVCNN) offer superior efficiency in 

nucleotide encoding and overall processing time compared to their real-valued 

counterparts. However, multilayer perceptron (MLP) models in certain contexts 

showed quicker training times, suggesting that for some applications, real-valued 

models might still offer advantages. Despite a slight increase in parameter count, 

complex-valued MLPs (CVMLP) showed commendable performance, especially in 

terms of validation accuracy, indicating better generalization to new data. The study 

suggests that the choice between real-valued and complex-valued models should be 

tailored to the specific requirements of genome sequencing classification projects, 

considering the trade-offs between model complexity, computational efficiency, and 

accuracy. The article underscores the potential of complex-valued deep learning in 

enhancing the accuracy and efficiency of microbial classification, contributing 

significantly to the field of bioinformatics and computational genomics. 
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