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Abstract. This research is conducted to develop an artificial intelligence and 
machine learning system that can detect riders who do not wear helmets and to 
analyze and compare the capabilities of YOLO and RetinaNet algorithms in 
detecting these riders. The data from the CMU Smart Gate system's LPR (License 
Plate Recognition) camera, which detects the data of vehicles entering and exiting 
the gates of Chiang Mai University, was used for training and measuring the system 
performance. The results showed that both YOLO and RetinaNet algorithm could be 
used to develop a system to detect motorcyclists who do not wear helmets. However, 
the RetinaNet algorithm training model mean precision of 0.999 was higher than that 
of the YOLO algorithm which is 0.983. Precision specific to detecting motorcyclists 
without helmets both algorithms got the same result of 1.000. When the model was 
tested for processing time per image, the YOLO algorithm took less time to execute 
than the RetinaNet algorithm. At average value, the YOLO algorithm took 0.152 
seconds. The RetinaNet algorithm took 1.659 seconds. 
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1. Introduction 

The behavior that poses a risk of road accidents includes speeding, driving under the influence, 
not wearing a helmet, not buckling up, not turning on motorcycle lights, and disregarding traffic 
signals, among others. Researchers are particularly interested in the behavior of not wearing a 
helmet because the statistics show that registered motorcycles in Thailand have a staggering 53.96% 
non-compliance rate. [1] The statistics also indicate that motorcycle accidents account for a high 
percentage of accidents in Thailand, reaching 39% [2], ranking first among all types of vehicles. 
Furthermore, only 45% of motorcycle users [3], including both riders and passengers, wear helmets 
in Thailand. 
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Despite the existence of laws and research confirming the benefits of wearing helmets, and even 
though the government campaigns for motorcycle riders and passengers to wear helmets at all times, 
the statistical data mentioned earlier still remains high. This is because the enforcement of these 
regulations requires personnel to physically check and ensure compliance, which is not feasible to 
do for motorcycle riders at all times. 

In order to assist officers in monitoring helmet usage at all times, researchers are interested in 
utilizing artificial intelligence and machine learning techniques to detect motorcycle riders who do 
not wear helmets. They plan to use the CMU Smart Gate project, which can detect vehicle data 
entering and exiting the gates within Chiang Mai University. This includes capturing license plate 
numbers and registered card information. The system will employ cameras to monitor each gate of 
the university, making it suitable for detecting motorcycle riders who do not wear helmets. Two 
algorithms, namely YOLO and RetinaNet, will be tested to determine which one is most suitable for 
detecting motorcycle riders without helmets. The results of each algorithm will be analyzed and 
compared. 

2. Literature Review 

2.1. Previous Studies Using YOLO and RetinaNet algorithms 

Wei Jia and colleagues [4] conducted a study on the development of a helmet detection system 
for motorcycle riders in China. The development process consisted of two main steps. In the first 
step, they developed a motorcycle detection system using closed-circuit cameras in China with 
image resolution of 1920 x 1080 pixels. In the second step, they used the output data from the first 
step as input for the second step to detect motorcycle riders without helmets. They utilized the 
YOLOv5 algorithm as the main approach and compared it with two-stage algorithms such as Faster 
R-CNN, Cascade R-CNN, and Libra R-CNN, as well as one-stage algorithms such as SSD, 
RetinaNet, YOLOv5, and FCOS. The overall results from both steps showed that the YOLOv5 
algorithm achieved the highest mAP (mean Average Precision) of 97.7% and an F1-Score of 92.7%. 

Hanhe Lin and colleagues [5] conducted a study on the development of a helmet detection 
system for motorcycle users using the CNN-based multi-task learning (MTL) method. They 
collected data from 91,000 frames of motorcycles, consisting of 10,006 motorcycles, from 12 
different locations in Myanmar. The helmet detection system aimed to detect both riders and 
passengers sitting in various positions, including one front rider, one rear pillion, two rear pillions, 
and three rear pillions. The study compared two algorithms, YOLOv2 and RetinaNet. In this 
research, the helmet detection task involved detecting both riders and passengers, resulting in a total 
of 34 classes for training. The results of the study were presented in terms of F1-Score, where 
YOLOv2 achieved a score of 60.0% and RetinaNet achieved a score of 67.3%. 
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J. Sivaraj and colleagues [6] conducted a study on the development of a helmet detection system 
for road safety using Google Colab for development. The training data consisted of a total of 2,121 
images collected from various open-source websites. These images were divided into 1,000 images 
of motorcycle riders and 1,121 images of helmets. Two models were trained: a motorcycle rider 
detection model and a helmet detection model. The study compared three algorithms: YOLOv3, 
SSD300, and Caffe Model. The results of the motorcycle rider detection models were as follows: 
YOLOv3 achieved an accuracy of 91.19%, SSD300 achieved 74.30%, and Caffe Model achieved 
76.00%. The results of the helmet detection models were as follows: YOLOv3 achieved an accuracy 
of 90.13%, SSD300 achieved 85.00%, and Caffe Model achieved 81.00%. 

3. Data preparation 

3.1. Data 

The researchers have collected data from the front gate camera of Chiang Mai University, which 
is recorded by the CMU Smart Gate system. The data was collected for a total of 3 days during the 
time periods of 08:00 - 09:00 and 15:00 - 16:00. The collected data is in the form of video footage 
captured by the LPR camera. The data is divided into 2 days for training the model and 1 day for 
testing the model. 

3.2. Convert video data to image data 

The data obtained from the CMU Smart Gate system was converted from video format to image 
data. The researchers used VLC software to convert the video data into images. 

3.3. Bounding boxes in image data 

The researchers used the LabelImg program to annotate the desired objects from the image data. 
They annotated the motorcycle riders wearing helmets, as shown in Image 1, and the motorcycle 
riders not wearing helmets, as shown in the example image in Fig. 1. 

  
Fig. 1. Bounding box of a motorcycle rider wearing a helmet and 

rider not wearing a helmet from the LabelImg program. 
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From annotating all the image data, we obtained a set of images for training and testing the model, 
as shown in Table 1. 

Table 1. Image Data for Training and Testing the Model 

 Training data Test data 
The motorcyclist wearing a helmet 542 220 

The motorcyclist not wearing a helmet 184 72 
Total 726 292 

 

3.4. YOLO Algorithm 

The YOLO algorithm, or You Only Look Once, is a real-time object detection algorithm created 
by Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi in 2015. It is notable for its 
speed, accuracy, and the ability to detect overlapping objects. The algorithm belongs to the One-
stage Object Detection group and consists of three main components. The first component is the 
Backbone, which uses Darknet53, a Convolutional Neural Network (CNN), to extract image 
features. The second component is the Neck, which incorporates SSP (Spatial Pyramid Pooling) and 
PANet (Path Aggregation Network). The third component is the Head, responsible for predicting 
results using the YOLO algorithm [7], as shown in the example in Fig. 2. 

 

Fig. 2. YOLO Algorithm Architecture 
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3.5. RetinaNet Algorithm 

The RetinaNet algorithm was developed by Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming 
He, and Piotr Dollar. It belongs to the One-stage Object Detection group, similar to the YOLO 
algorithm. Within the RetinaNet algorithm architecture, the Backbone utilizes ResNet (Residual 
Network) for extracting image features using Convolutional Neural Networks. The Neck employs 
FPN (Feature Pyramid Network) for detecting objects at multiple scales, and the Head utilizes the 
RetinaNet algorithm to make predictions based on the data from the Neck [8]. This is illustrated in 
Fig. 3. 

 

Fig. 3. RetinaNet Algorithm Architecture 

4. Results 

4.1. The method of performance evaluation 

The measurement of accuracy is evaluated based on the values of Precision and Recall, as shown 
in Equations 1 and 2. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃																																																																														(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁																																																																																				(2) 

True Positive (TP): A test result that correctly indicates the presence of a condition or characteristic 

True Negative (TN): A test result that correctly indicates the absence of a condition or characteristic 

False Positive (FP): A test result which wrongly indicates that a particular condition or attribute is 
present 

False Negative (FN): A test result which wrongly indicates that a particular condition or attribute is 
absent 
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In cases where it is not possible to choose between Precision or Recall, the F1-Score formula can 
be used. The F1-Score is the harmonic mean between Precision and Recall, calculated using 
Equation 3. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 																																															(3) 

In cases where there is a need to evaluate overall performance in multi-class training, and the 
training involves more than one class, the mAP (mean Average Precision) formula can be used to 
assess the average accuracy of object detection. This can be calculated using Equation 4. 

𝑚𝐴𝑃 =
1
𝑘=𝐴𝑃𝑖

!

"

																																																																																						(4) 

“k” is the number of Epochs. 

“𝐴𝑃𝑖” stands for the average precision and recall, which can be calculated using the formula shown 
in Equation 5. 

𝐴𝑃 ==(𝑅# −	𝑅#$%)𝑃#
#

																																																																							(5) 

“R” is the value of recall. 

“P” is the value of precision 
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4.2. The results of training the YOLO algorithm 

The researchers trained the YOLO algorithm using a total of 726 images. They used 292 images 
for testing the trained model. The parameter "Epoch" was set to 100, 200, 300, and 400, while the 
parameter "Batch" was set to 1, 2, and 4. 

Table 2. Results of YOLO Algorithm Training Experiment 

Pa
ra

m
et

er
 

Epoch 100 200 300 400 

Batch 1 2 4 1 2 4 1 2 4 1 2 4 

Re
su

lts
 

Epoch 100 100 100 179 142 156 237 242 166 218 115 161 

Precision 
A 0.889 0.938 0.933 0.938 0.964 0.960 0.969 0.972 0.945 0.924 0.938 0.953 

Recall  
A 0.968 0.982 0.995 1.000 1.000 0.994 0.994 0.964 1.000 1.000 0.960 0.982 

F1-Score 
A 0.927 0.959 0.963 0.968 0.982 0.977 0.981 0.968 0.972 0.960 0.949 0.967 

Precision 
B 0.859 0.940 0.984 0.925 1.000 0.969 0.997 0.974 1.000 0.985 0.947 1.000 

Recall  
B 0.847 0.872 0.854 0.917 0.949 0.880 0.931 0.917 0.876 0.892 0.819 0.873 

F1-Score 
A 0.853 0.905 0.914 0.921 0.974 0.922 0.963 0.945 0.934 0.936 0.878 0.932 

mAP 0.874 0.939 0.958 0.932 0.982 0.965 0.983 0.973 0.973 0.954 0.942 0.976 

Precision A: The accuracy of detecting motorcycle riders wearing safety helmets. 

Recall A: The correctness of detecting motorcycle riders wearing safety helmets. 

F1-Score A: The average value between the precision and recall of detecting motorcycle riders 
wearing safety helmets. 

Precision B: The accuracy of detecting motorcycle riders not wearing safety helmets. 

Recall B: The correctness of detecting motorcycle riders not wearing safety helmets. 

F1-Score B: The average value between the precision and recall of detecting motorcycle riders not 
wearing safety helmets. 

mAP: Mean Average Precision, calculated as the average precision of detecting motorcycle riders 
wearing safety helmets and the precision of detecting motorcycle riders not wearing safety helmets. 
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4.3. The resource utilization during the training of the YOLO algorithm. 

The researchers used Colab Pro as the computing resource for training the YOLO algorithm. 

 

 

Fig. 4. Utilization of CPU, Memory, GPU, and Execution Time of the YOLO Algorithm. 

The utilization of CPU, Memory, GPU, and Execution Time from the highest values, as shown in 
Fig. 4, reveals that as the Batch parameter increases, the CPU and GPU usage also increase, while 
the Execution Time decreases. This is because when the Batch parameter is set to 1, only one image 
is used for training, but when it is adjusted to 2, two images are used for training, resulting in higher 
CPU and GPU utilization. Conversely, as the training workload increases, the Execution Time 
decreases. In terms of Memory, it pertains to the utilization of the algorithm before processing 
through the GPU, which accounts for approximately 58% - 67% of the GPU's 14 GB resource. The 
Batch parameter does not affect Memory. 
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4.4. The results of training the RetinaNet algorithm 

The results of training the RetinaNet model were as follows: The researcher used a total of 726 
images for training the model and 292 images for testing. The parameter "Epoch" was set to 100, 
200, 300, and 400, while the parameter "Batch" was set to 1, 2, and 4. 

Table 3. Results of RetinaNet Training Experiment 

Pa
ra

m
et

er
 Epoch 100 200 300 400 

Batch 1 2 4 1 2 4 1 2 4 1 2 4 

Steps 726 363 181 726 363 181 726 363 181 726 363 181 

Re
su

lts
 

Epoch 24 25 40 24 26 27 24 26 27 24 25 28 

Precision 
A 0.999 0.999 0.999 0.992 0.999 0.999 0.998 0.999 0.999 0.999 0.999 0.999 

Precision 
B 0.995 0.997 0.999 0.998 0.995 0.999 0.997 0.999 0.999 0.997 0.999 1.000 

mAP 0.996 0.998 0.999 0.995 0.997 0.999 0.998 0.999 0.999 0.998 0.999 0.999 

Precision A is the accuracy of detecting motorcyclists wearing helmets. 

Recall A is the correctness of detecting motorcyclists wearing helmets. 

mAP (mean Average Precision) is calculated as the average accuracy of detecting motorcyclists 
wearing helmets and the accuracy of detecting motorcyclists not wearing helmets. 
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4.5. The resource utilization during the training of the RetinaNet algorithm. 

The researchers used Colab Pro as the computing resource for training the RetinaNet algorithm. 

 

 

Fig. 5. CPU, Memory, GPU, and Execution Time Usage of RetinaNet Algorithm. 

The utilization of CPU, Memory, GPU, and Execution Time from the highest values of the 
RetinaNet model, as shown in Fig. 5, reveals the following observations. CPU and Memory do not 
affect parameter adjustment since CPU utilizes approximately 83% - 87% of the 2.20GHz CPU 
resource, while Memory utilizes around 33.51% - 34.10% of the 14 GB Memory resource. As for 
GPU, it does not affect parameter adjustment but operates at 100% utilization from the 16 GB GPU 
resource, indicating that the RetinaNet algorithm maximizes GPU performance. Regarding 
Execution Time, it remains relatively consistent. The slight variation is due to the experimental 
results from different epochs, as depicted in Table 3, where the maximum value corresponds to the 
epoch at 40, resulting in slightly longer execution time. 
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4.6. The results of testing the processing time of the YOLO and RetinaNet 
algorithms per image. 

The researcher conducted a performance test by processing a total of 292 test images to 
determine which algorithm has the fastest image processing time per image when using the trained 
models. 

Table 4. Results of processing time testing for object detection algorithms  
YOLO and RetinaNet. 

 MIN (s) MAX (s) AVG (s) RANGE (s) 
YOLO 0.146 0.245 0.152 0.099 

RetinaNet 1.321 2.647 1.659 1.326 
 

5. Discussion and Conclusion 

From the results of the study on the YOLO and RetinaNet algorithms in Chapter 4, it was 
found that adjusting the parameters of Epoch and Batch for the YOLO algorithm did not have an 
impact on the number of training epochs and the average precision (mAP) value. When increasing 
the parameter values, the number of training epochs and mAP value sometimes increased, but in 
some cases, they decreased. As for the RetinaNet algorithm, adjusting the Epoch parameter did not 
affect the number of training epochs and the average precision. However, increasing the Batch 
parameter resulted in an increase in the number of training epochs and the average precision value. 

The performance evaluation of the YOLO and RetinaNet algorithms on the output obtained 
after training the models shows that the YOLO algorithm has higher values for Epoch, Precision, 
Recall, F1-Score, and mAP compared to the RetinaNet algorithm, which only has values for Epoch, 
Precision, and mAP. This indicates that the YOLO algorithm provides better performance 
measurements. In terms of overall results from the experiments on training the models using images 
of motorcycle riders wearing and not wearing helmets, based on the average precision (mAP) 
values, the RetinaNet algorithm achieved the highest result at 0.999, while YOLO achieved 0.983. 
In terms of detecting motorcycle riders not wearing helmets, based on the precision values, both 
algorithms achieved the same result of 1.000. Comparing these precision values with relevant 
research, it was found that the precision values of the related research work in Chapter 2 were higher 
than 0.900, and the precision values of the researchers were also higher than 0.900. This indicates 
that the results of training the models using the YOLO and RetinaNet algorithms have precision 
values higher than 0.900, which are consistent with each other. 

The utilization of computational resources during model training, the researchers only 
compared the Batch parameter because the Epoch parameter determines the maximum number of 
training rounds. However, the Batch parameter determines the number of iterations used to train the 
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model within one Epoch. For example, if there are 200 images and the Batch is set to 2, there will be 
100 iterations, divided into 4 parts. 

1. CPU Utilization: Increasing the Batch parameter of the YOLO algorithm results in higher 
CPU usage, whereas adjusting the Batch parameter of the RetinaNet algorithm does not 
significantly affect CPU usage. The YOLO algorithm consumes approximately 83% - 
87% of the CPU resources at 2.20GHz. 

2. Memory Utilization: Increasing the Batch parameter of both the YOLO and RetinaNet 
algorithms does not significantly impact memory usage. The YOLO algorithm consumes 
approximately 58% - 67% of the available memory, while the RetinaNet algorithm utilizes 
around 33% of the 14 GB memory resources. 

3. GPU Utilization: Increasing the Batch parameter of the YOLO algorithm results in higher 
GPU usage, while adjusting the Batch parameter of the RetinaNet algorithm does not 
significantly impact GPU utilization. The YOLO algorithm utilizes approximately 100% 
of the available 16 GB GPU resources. 

4. Execution Time: Increasing the Batch parameter of the YOLO algorithm results in 
reduced training time, while the RetinaNet algorithm maintains a similar execution time of 
approximately 2 hours and 20 minutes. This is because the experimental results for Epoch 
closely align with each other as shown in Table 3, except for one line that has the highest 
value. This discrepancy is due to the Epoch experiment being conducted for 40 rounds, 
resulting in increased execution time. 

From the model testing results regarding the processing time of the YOLO and RetinaNet 
algorithms per image, the YOLO algorithm requires less processing time compared to the RetinaNet 
algorithm. Based on the AVG values, the YOLO algorithm takes 0.152 seconds, while the RetinaNet 
algorithm takes 1.659 seconds. The difference between them is 1.507 seconds in terms of the range 
(RANGE). Specifically, the YOLO algorithm has a difference of 0.099 seconds, whereas the 
RetinaNet algorithm has a difference of 1.326 seconds. When comparing these values, it is evident 
that the YOLO algorithm has a smaller difference than the RetinaNet algorithm. 

The development of a system for detecting motorcycle riders without helmets using the YOLO 
and RetinaNet algorithms is possible. Both the YOLO and RetinaNet algorithms can be utilized to 
develop a system for detecting motorcycle riders who are not wearing helmets. When it comes to 
selecting and utilizing the algorithms, researchers have their own opinions. If the goal is to have a 
model that performs fast image processing and provides outputs such as Epoch, Precision, Recall, 
F1-Score, and mAP for model performance evaluation, YOLO algorithm can be chosen for training 
the model. On the other hand, if the objective is to have a highly accurate model without focusing 
on processing speed or having limited computing resources, the RetinaNet algorithm can be selected 
for training the model. 

  



Data Science and Engineering (DSE) Record, Volume 4, issue 1. 
 

81 

References 

[1] Department of Land Transport, Transportation Statistics Report Year 2015 - 2019, 2019, pp. 
3. 

[2] Office of Transport and Traffic Policy and Planning, Analysis Report on Road Accident 
Situations by the Ministry of Transport, 2018, p. 7. 

[3] ThaiRoads Foundation. The Helmet Usage Rate of Motorcycle Users in Thailand. [Online]. 
Available: http://trso.thairoads.org/statistic/helmet 

[4] W. Jia, S. Xu, Z. Liang, Y. Zhao, H. Min, S. Li and Y. Yu, Real-time automatic helmet 
detection of motorcyclists in urban traffic using improved YOLOv5 detector, 2021, pp. 
3623 - 3637. 

[5] H. Lin , J.D. Deng , (Member, IEEE), Deike Albers and Felix Wilhelm Siebert, Helmet Use 
Detection of Tracked Motorcycles Using CNN-Based Multi-Task Learning, 2020, pp. 
162073 - 162084. 

[6] J. Sivaraj, R.S. Sudhan Adithya, Adhavan Alexander, M. Vishnudeep, S. Mohammed 
Farhanudin, P. Vishnu and T. Anusha, Helmet Violation Detection Application for Road 
Safety, 2021, pp. 448 - 454. 

[7] OpenGenus IQ (2023). YOLO v5 model architecture. [Online]. Available: https://iq.open 
genus.org/yolov5 

[8] T.Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollar,  Focal Loss for Dense Object 
Detection, 2017, pp. 2983 - 2984. 

 


