
Data Science and Engineering (DSE) Record, Volume 4, issue 1.

Development of Detection System for
Motorcyclists without Helmet

Sukrit Akarametagul 1 and Paskorn Champrasert 2

1 Master’s Degree Program in Data Science, Chiang Mai University, Chiang Mai, Thailand
2 Department of Computer Engineering, Faculty of Engineering, Chiang Mai University,

Chiang Mai, Thailand

sukrit_ak@cmu.ac.th 1 and paskorn.c@cmu.ac.th 2

Abstract. This research is conducted to develop an artificial intelligence and
machine learning system that can detect riders who do not wear helmets and to
analyze and compare the capabilities of YOLO and RetinaNet algorithms in
detecting these riders. The data from the CMU Smart Gate system's LPR (License
Plate Recognition) camera, which detects the data of vehicles entering and exiting
the gates of Chiang Mai University, was used for training and measuring the system
performance. The results showed that both YOLO and RetinaNet algorithm could be
used to develop a system to detect motorcyclists who do not wear helmets. However,
the RetinaNet algorithm training model mean precision of 0.999 was higher than that
of the YOLO algorithm which is 0.983. Precision specific to detecting motorcyclists
without helmets both algorithms got the same result of 1.000. When the model was
tested for processing time per image, the YOLO algorithm took less time to execute
than the RetinaNet algorithm. At average value, the YOLO algorithm took 0.152
seconds. The RetinaNet algorithm took 1.659 seconds.

Keywords: Deep learning, Helmet use detection, Motorcycle, YOLO, RetinaNet.

1. Introduction

The behavior that poses a risk of road accidents includes speeding, driving under the influence,
not wearing a helmet, not buckling up, not turning on motorcycle lights, and disregarding traffic
signals, among others. Researchers are particularly interested in the behavior of not wearing a
helmet because the statistics show that registered motorcycles in Thailand have a staggering 53.96%
non-compliance rate. [1] The statistics also indicate that motorcycle accidents account for a high
percentage of accidents in Thailand, reaching 39% [2], ranking first among all types of vehicles.
Furthermore, only 45% of motorcycle users [3], including both riders and passengers, wear helmets
in Thailand.

Data Science and Engineering (DSE) Record, Volume 4, issue 1.

70

Despite the existence of laws and research confirming the benefits of wearing helmets, and even
though the government campaigns for motorcycle riders and passengers to wear helmets at all times,
the statistical data mentioned earlier still remains high. This is because the enforcement of these
regulations requires personnel to physically check and ensure compliance, which is not feasible to
do for motorcycle riders at all times.

In order to assist officers in monitoring helmet usage at all times, researchers are interested in
utilizing artificial intelligence and machine learning techniques to detect motorcycle riders who do
not wear helmets. They plan to use the CMU Smart Gate project, which can detect vehicle data
entering and exiting the gates within Chiang Mai University. This includes capturing license plate
numbers and registered card information. The system will employ cameras to monitor each gate of
the university, making it suitable for detecting motorcycle riders who do not wear helmets. Two
algorithms, namely YOLO and RetinaNet, will be tested to determine which one is most suitable for
detecting motorcycle riders without helmets. The results of each algorithm will be analyzed and
compared.

2. Literature Review

2.1. Previous Studies Using YOLO and RetinaNet algorithms

Wei Jia and colleagues [4] conducted a study on the development of a helmet detection system
for motorcycle riders in China. The development process consisted of two main steps. In the first
step, they developed a motorcycle detection system using closed-circuit cameras in China with
image resolution of 1920 x 1080 pixels. In the second step, they used the output data from the first
step as input for the second step to detect motorcycle riders without helmets. They utilized the
YOLOv5 algorithm as the main approach and compared it with two-stage algorithms such as Faster
R-CNN, Cascade R-CNN, and Libra R-CNN, as well as one-stage algorithms such as SSD,
RetinaNet, YOLOv5, and FCOS. The overall results from both steps showed that the YOLOv5
algorithm achieved the highest mAP (mean Average Precision) of 97.7% and an F1-Score of 92.7%.

Hanhe Lin and colleagues [5] conducted a study on the development of a helmet detection
system for motorcycle users using the CNN-based multi-task learning (MTL) method. They
collected data from 91,000 frames of motorcycles, consisting of 10,006 motorcycles, from 12
different locations in Myanmar. The helmet detection system aimed to detect both riders and
passengers sitting in various positions, including one front rider, one rear pillion, two rear pillions,
and three rear pillions. The study compared two algorithms, YOLOv2 and RetinaNet. In this
research, the helmet detection task involved detecting both riders and passengers, resulting in a total
of 34 classes for training. The results of the study were presented in terms of F1-Score, where
YOLOv2 achieved a score of 60.0% and RetinaNet achieved a score of 67.3%.

Data Science and Engineering (DSE) Record, Volume 4, issue 1.

71

J. Sivaraj and colleagues [6] conducted a study on the development of a helmet detection system
for road safety using Google Colab for development. The training data consisted of a total of 2,121
images collected from various open-source websites. These images were divided into 1,000 images
of motorcycle riders and 1,121 images of helmets. Two models were trained: a motorcycle rider
detection model and a helmet detection model. The study compared three algorithms: YOLOv3,
SSD300, and Caffe Model. The results of the motorcycle rider detection models were as follows:
YOLOv3 achieved an accuracy of 91.19%, SSD300 achieved 74.30%, and Caffe Model achieved
76.00%. The results of the helmet detection models were as follows: YOLOv3 achieved an accuracy
of 90.13%, SSD300 achieved 85.00%, and Caffe Model achieved 81.00%.

3. Data preparation

3.1. Data

The researchers have collected data from the front gate camera of Chiang Mai University, which
is recorded by the CMU Smart Gate system. The data was collected for a total of 3 days during the
time periods of 08:00 - 09:00 and 15:00 - 16:00. The collected data is in the form of video footage
captured by the LPR camera. The data is divided into 2 days for training the model and 1 day for
testing the model.

3.2. Convert video data to image data

The data obtained from the CMU Smart Gate system was converted from video format to image
data. The researchers used VLC software to convert the video data into images.

3.3. Bounding boxes in image data

The researchers used the LabelImg program to annotate the desired objects from the image data.
They annotated the motorcycle riders wearing helmets, as shown in Image 1, and the motorcycle
riders not wearing helmets, as shown in the example image in Fig. 1.

Fig. 1. Bounding box of a motorcycle rider wearing a helmet and

rider not wearing a helmet from the LabelImg program.

Data Science and Engineering (DSE) Record, Volume 4, issue 1.

72

From annotating all the image data, we obtained a set of images for training and testing the model,
as shown in Table 1.

Table 1. Image Data for Training and Testing the Model

 Training data Test data
The motorcyclist wearing a helmet 542 220

The motorcyclist not wearing a helmet 184 72
Total 726 292

3.4. YOLO Algorithm

The YOLO algorithm, or You Only Look Once, is a real-time object detection algorithm created
by Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi in 2015. It is notable for its
speed, accuracy, and the ability to detect overlapping objects. The algorithm belongs to the One-
stage Object Detection group and consists of three main components. The first component is the
Backbone, which uses Darknet53, a Convolutional Neural Network (CNN), to extract image
features. The second component is the Neck, which incorporates SSP (Spatial Pyramid Pooling) and
PANet (Path Aggregation Network). The third component is the Head, responsible for predicting
results using the YOLO algorithm [7], as shown in the example in Fig. 2.

Fig. 2. YOLO Algorithm Architecture

Data Science and Engineering (DSE) Record, Volume 4, issue 1.

73

3.5. RetinaNet Algorithm

The RetinaNet algorithm was developed by Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming
He, and Piotr Dollar. It belongs to the One-stage Object Detection group, similar to the YOLO
algorithm. Within the RetinaNet algorithm architecture, the Backbone utilizes ResNet (Residual
Network) for extracting image features using Convolutional Neural Networks. The Neck employs
FPN (Feature Pyramid Network) for detecting objects at multiple scales, and the Head utilizes the
RetinaNet algorithm to make predictions based on the data from the Neck [8]. This is illustrated in
Fig. 3.

Fig. 3. RetinaNet Algorithm Architecture

4. Results

4.1. The method of performance evaluation

The measurement of accuracy is evaluated based on the values of Precision and Recall, as shown
in Equations 1 and 2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃																																																																														(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁																																																																																				(2)

True Positive (TP): A test result that correctly indicates the presence of a condition or characteristic

True Negative (TN): A test result that correctly indicates the absence of a condition or characteristic

False Positive (FP): A test result which wrongly indicates that a particular condition or attribute is
present

False Negative (FN): A test result which wrongly indicates that a particular condition or attribute is
absent

Data Science and Engineering (DSE) Record, Volume 4, issue 1.

74

In cases where it is not possible to choose between Precision or Recall, the F1-Score formula can
be used. The F1-Score is the harmonic mean between Precision and Recall, calculated using
Equation 3.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 																																															(3)

In cases where there is a need to evaluate overall performance in multi-class training, and the
training involves more than one class, the mAP (mean Average Precision) formula can be used to
assess the average accuracy of object detection. This can be calculated using Equation 4.

𝑚𝐴𝑃 =
1
𝑘=𝐴𝑃𝑖

!

"

																																																																																						(4)

“k” is the number of Epochs.

“𝐴𝑃𝑖” stands for the average precision and recall, which can be calculated using the formula shown
in Equation 5.

𝐴𝑃 ==(𝑅# −	𝑅#$%)𝑃#
#

																																																																							(5)

“R” is the value of recall.

“P” is the value of precision

Data Science and Engineering (DSE) Record, Volume 4, issue 1.

75

4.2. The results of training the YOLO algorithm

The researchers trained the YOLO algorithm using a total of 726 images. They used 292 images
for testing the trained model. The parameter "Epoch" was set to 100, 200, 300, and 400, while the
parameter "Batch" was set to 1, 2, and 4.

Table 2. Results of YOLO Algorithm Training Experiment

Pa
ra

m
et

er

Epoch 100 200 300 400

Batch 1 2 4 1 2 4 1 2 4 1 2 4

Re
su

lts

Epoch 100 100 100 179 142 156 237 242 166 218 115 161

Precision
A 0.889 0.938 0.933 0.938 0.964 0.960 0.969 0.972 0.945 0.924 0.938 0.953

Recall
A 0.968 0.982 0.995 1.000 1.000 0.994 0.994 0.964 1.000 1.000 0.960 0.982

F1-Score
A 0.927 0.959 0.963 0.968 0.982 0.977 0.981 0.968 0.972 0.960 0.949 0.967

Precision
B 0.859 0.940 0.984 0.925 1.000 0.969 0.997 0.974 1.000 0.985 0.947 1.000

Recall
B 0.847 0.872 0.854 0.917 0.949 0.880 0.931 0.917 0.876 0.892 0.819 0.873

F1-Score
A 0.853 0.905 0.914 0.921 0.974 0.922 0.963 0.945 0.934 0.936 0.878 0.932

mAP 0.874 0.939 0.958 0.932 0.982 0.965 0.983 0.973 0.973 0.954 0.942 0.976

Precision A: The accuracy of detecting motorcycle riders wearing safety helmets.

Recall A: The correctness of detecting motorcycle riders wearing safety helmets.

F1-Score A: The average value between the precision and recall of detecting motorcycle riders
wearing safety helmets.

Precision B: The accuracy of detecting motorcycle riders not wearing safety helmets.

Recall B: The correctness of detecting motorcycle riders not wearing safety helmets.

F1-Score B: The average value between the precision and recall of detecting motorcycle riders not
wearing safety helmets.

mAP: Mean Average Precision, calculated as the average precision of detecting motorcycle riders
wearing safety helmets and the precision of detecting motorcycle riders not wearing safety helmets.

Data Science and Engineering (DSE) Record, Volume 4, issue 1.

76

4.3. The resource utilization during the training of the YOLO algorithm.

The researchers used Colab Pro as the computing resource for training the YOLO algorithm.

Fig. 4. Utilization of CPU, Memory, GPU, and Execution Time of the YOLO Algorithm.

The utilization of CPU, Memory, GPU, and Execution Time from the highest values, as shown in
Fig. 4, reveals that as the Batch parameter increases, the CPU and GPU usage also increase, while
the Execution Time decreases. This is because when the Batch parameter is set to 1, only one image
is used for training, but when it is adjusted to 2, two images are used for training, resulting in higher
CPU and GPU utilization. Conversely, as the training workload increases, the Execution Time
decreases. In terms of Memory, it pertains to the utilization of the algorithm before processing
through the GPU, which accounts for approximately 58% - 67% of the GPU's 14 GB resource. The
Batch parameter does not affect Memory.

0
20
40
60
80

100

Batch 1 Batch 2 Batch 4

(P
er
ce
nt
)

CPU Utilization

Epoch 100 Epoch 200

Epoch 300 Epoch 400

0
20
40
60
80

100

Batch 1 Batch 2 Batch 4

(P
er
ce
nt
)

Memory Utilization

Epoch 100 Epoch 200

Epoch 300 Epoch 400

0
20
40
60
80

100

Batch 1 Batch 2 Batch 4

(P
er
ce
nt
)

GPU Utilization

Epoch 100 Epoch 200

Epoch 300 Epoch 400

1
2
3
4
5
6
7
8

Batch 1 Batch 2 Batch 4

(H
ou

r)

Execution Time

Epoch 100 Epoch 200

Epoch 300 Epoch 400

Data Science and Engineering (DSE) Record, Volume 4, issue 1.

77

4.4. The results of training the RetinaNet algorithm

The results of training the RetinaNet model were as follows: The researcher used a total of 726
images for training the model and 292 images for testing. The parameter "Epoch" was set to 100,
200, 300, and 400, while the parameter "Batch" was set to 1, 2, and 4.

Table 3. Results of RetinaNet Training Experiment

Pa
ra

m
et

er
 Epoch 100 200 300 400

Batch 1 2 4 1 2 4 1 2 4 1 2 4

Steps 726 363 181 726 363 181 726 363 181 726 363 181

Re
su

lts

Epoch 24 25 40 24 26 27 24 26 27 24 25 28

Precision
A 0.999 0.999 0.999 0.992 0.999 0.999 0.998 0.999 0.999 0.999 0.999 0.999

Precision
B 0.995 0.997 0.999 0.998 0.995 0.999 0.997 0.999 0.999 0.997 0.999 1.000

mAP 0.996 0.998 0.999 0.995 0.997 0.999 0.998 0.999 0.999 0.998 0.999 0.999

Precision A is the accuracy of detecting motorcyclists wearing helmets.

Recall A is the correctness of detecting motorcyclists wearing helmets.

mAP (mean Average Precision) is calculated as the average accuracy of detecting motorcyclists
wearing helmets and the accuracy of detecting motorcyclists not wearing helmets.

Data Science and Engineering (DSE) Record, Volume 4, issue 1.

78

4.5. The resource utilization during the training of the RetinaNet algorithm.

The researchers used Colab Pro as the computing resource for training the RetinaNet algorithm.

Fig. 5. CPU, Memory, GPU, and Execution Time Usage of RetinaNet Algorithm.

The utilization of CPU, Memory, GPU, and Execution Time from the highest values of the
RetinaNet model, as shown in Fig. 5, reveals the following observations. CPU and Memory do not
affect parameter adjustment since CPU utilizes approximately 83% - 87% of the 2.20GHz CPU
resource, while Memory utilizes around 33.51% - 34.10% of the 14 GB Memory resource. As for
GPU, it does not affect parameter adjustment but operates at 100% utilization from the 16 GB GPU
resource, indicating that the RetinaNet algorithm maximizes GPU performance. Regarding
Execution Time, it remains relatively consistent. The slight variation is due to the experimental
results from different epochs, as depicted in Table 3, where the maximum value corresponds to the
epoch at 40, resulting in slightly longer execution time.

0
20
40
60
80

100

Batch 1 Batch 2 Batch 4

(P
er
ce
nt
)

CPU Utilization

Epoch 100 Epoch 200

Epoch 300 Epoch 400

0
20
40
60
80

100

Batch 1 Batch 2 Batch 4

(P
er
ce
nt
)

Memory Utilization

Epoch 100 Epoch 200

Epoch 300 Epoch 400

0
20
40
60
80

100

Batch 1 Batch 2 Batch 4

(P
er
ce
nt
)

GPU Utilization

Epoch 100 Epoch 200

Epoch 300 Epoch 400

1
2
3
4
5
6
7
8

Batch 1 Batch 2 Batch 4

(H
ou

r)

Execution Time

Epoch 100 Epoch 200

Epoch 300 Epoch 400

Data Science and Engineering (DSE) Record, Volume 4, issue 1.

79

4.6. The results of testing the processing time of the YOLO and RetinaNet
algorithms per image.

The researcher conducted a performance test by processing a total of 292 test images to
determine which algorithm has the fastest image processing time per image when using the trained
models.

Table 4. Results of processing time testing for object detection algorithms
YOLO and RetinaNet.

 MIN (s) MAX (s) AVG (s) RANGE (s)
YOLO 0.146 0.245 0.152 0.099

RetinaNet 1.321 2.647 1.659 1.326

5. Discussion and Conclusion

From the results of the study on the YOLO and RetinaNet algorithms in Chapter 4, it was
found that adjusting the parameters of Epoch and Batch for the YOLO algorithm did not have an
impact on the number of training epochs and the average precision (mAP) value. When increasing
the parameter values, the number of training epochs and mAP value sometimes increased, but in
some cases, they decreased. As for the RetinaNet algorithm, adjusting the Epoch parameter did not
affect the number of training epochs and the average precision. However, increasing the Batch
parameter resulted in an increase in the number of training epochs and the average precision value.

The performance evaluation of the YOLO and RetinaNet algorithms on the output obtained
after training the models shows that the YOLO algorithm has higher values for Epoch, Precision,
Recall, F1-Score, and mAP compared to the RetinaNet algorithm, which only has values for Epoch,
Precision, and mAP. This indicates that the YOLO algorithm provides better performance
measurements. In terms of overall results from the experiments on training the models using images
of motorcycle riders wearing and not wearing helmets, based on the average precision (mAP)
values, the RetinaNet algorithm achieved the highest result at 0.999, while YOLO achieved 0.983.
In terms of detecting motorcycle riders not wearing helmets, based on the precision values, both
algorithms achieved the same result of 1.000. Comparing these precision values with relevant
research, it was found that the precision values of the related research work in Chapter 2 were higher
than 0.900, and the precision values of the researchers were also higher than 0.900. This indicates
that the results of training the models using the YOLO and RetinaNet algorithms have precision
values higher than 0.900, which are consistent with each other.

The utilization of computational resources during model training, the researchers only
compared the Batch parameter because the Epoch parameter determines the maximum number of
training rounds. However, the Batch parameter determines the number of iterations used to train the

Data Science and Engineering (DSE) Record, Volume 4, issue 1.

80

model within one Epoch. For example, if there are 200 images and the Batch is set to 2, there will be
100 iterations, divided into 4 parts.

1. CPU Utilization: Increasing the Batch parameter of the YOLO algorithm results in higher
CPU usage, whereas adjusting the Batch parameter of the RetinaNet algorithm does not
significantly affect CPU usage. The YOLO algorithm consumes approximately 83% -
87% of the CPU resources at 2.20GHz.

2. Memory Utilization: Increasing the Batch parameter of both the YOLO and RetinaNet
algorithms does not significantly impact memory usage. The YOLO algorithm consumes
approximately 58% - 67% of the available memory, while the RetinaNet algorithm utilizes
around 33% of the 14 GB memory resources.

3. GPU Utilization: Increasing the Batch parameter of the YOLO algorithm results in higher
GPU usage, while adjusting the Batch parameter of the RetinaNet algorithm does not
significantly impact GPU utilization. The YOLO algorithm utilizes approximately 100%
of the available 16 GB GPU resources.

4. Execution Time: Increasing the Batch parameter of the YOLO algorithm results in
reduced training time, while the RetinaNet algorithm maintains a similar execution time of
approximately 2 hours and 20 minutes. This is because the experimental results for Epoch
closely align with each other as shown in Table 3, except for one line that has the highest
value. This discrepancy is due to the Epoch experiment being conducted for 40 rounds,
resulting in increased execution time.

From the model testing results regarding the processing time of the YOLO and RetinaNet
algorithms per image, the YOLO algorithm requires less processing time compared to the RetinaNet
algorithm. Based on the AVG values, the YOLO algorithm takes 0.152 seconds, while the RetinaNet
algorithm takes 1.659 seconds. The difference between them is 1.507 seconds in terms of the range
(RANGE). Specifically, the YOLO algorithm has a difference of 0.099 seconds, whereas the
RetinaNet algorithm has a difference of 1.326 seconds. When comparing these values, it is evident
that the YOLO algorithm has a smaller difference than the RetinaNet algorithm.

The development of a system for detecting motorcycle riders without helmets using the YOLO
and RetinaNet algorithms is possible. Both the YOLO and RetinaNet algorithms can be utilized to
develop a system for detecting motorcycle riders who are not wearing helmets. When it comes to
selecting and utilizing the algorithms, researchers have their own opinions. If the goal is to have a
model that performs fast image processing and provides outputs such as Epoch, Precision, Recall,
F1-Score, and mAP for model performance evaluation, YOLO algorithm can be chosen for training
the model. On the other hand, if the objective is to have a highly accurate model without focusing
on processing speed or having limited computing resources, the RetinaNet algorithm can be selected
for training the model.

Data Science and Engineering (DSE) Record, Volume 4, issue 1.

81

References

[1] Department of Land Transport, Transportation Statistics Report Year 2015 - 2019, 2019, pp.
3.

[2] Office of Transport and Traffic Policy and Planning, Analysis Report on Road Accident
Situations by the Ministry of Transport, 2018, p. 7.

[3] ThaiRoads Foundation. The Helmet Usage Rate of Motorcycle Users in Thailand. [Online].
Available: http://trso.thairoads.org/statistic/helmet

[4] W. Jia, S. Xu, Z. Liang, Y. Zhao, H. Min, S. Li and Y. Yu, Real-time automatic helmet
detection of motorcyclists in urban traffic using improved YOLOv5 detector, 2021, pp.
3623 - 3637.

[5] H. Lin , J.D. Deng , (Member, IEEE), Deike Albers and Felix Wilhelm Siebert, Helmet Use
Detection of Tracked Motorcycles Using CNN-Based Multi-Task Learning, 2020, pp.
162073 - 162084.

[6] J. Sivaraj, R.S. Sudhan Adithya, Adhavan Alexander, M. Vishnudeep, S. Mohammed
Farhanudin, P. Vishnu and T. Anusha, Helmet Violation Detection Application for Road
Safety, 2021, pp. 448 - 454.

[7] OpenGenus IQ (2023). YOLO v5 model architecture. [Online]. Available: https://iq.open
genus.org/yolov5

[8] T.Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollar, Focal Loss for Dense Object
Detection, 2017, pp. 2983 - 2984.

