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Abstract. This independent study aims to develop a model for segmenting prox-

imal dental caries using a fully convolutional neural network in bitewing radio-

graphs. The segmentation models were created with the explicit goal of helping 

dentists in segmenting dental caries in radiographs for a second opinion. To de-

termine the most appropriate model architecture, we compared the performance 

of three fundamental segmentation models: U-Net, FPN (Feature Pyramid Net-

work), DeepLabV3+, and XsembleNet, a combination of the three preceding 

models. The system is evaluated in two ways. The first is to assess segmentation 

quality using the dice coefficient; empirical experiments indicate that Xsemble-

Net has the highest dice coefficient, followed by FPN. The second evaluation is 

to rate models’ 12 testing bitewing radiographs segmentation. While all four 

models are comparable in accuracy and specificity, XsembleNet and FPN jointly 

achieve the highest classification metrics score. As a result, it can be concluded 

that a fully convolutional neural network could be used to detect dental proximal 

caries radiographs via computer-assisted diagnosis. 

Keywords: Artificial intelligence, Semantic segmentation, Fully convolution 

network, Dental Caries, Dental radiograph  

1 Introduction 

Dental decay is a common disease affecting hundreds of millions of people worldwide. 

Having a carious tooth is known to affect health and quality of life. Dental caries causes 

the loss of mineral composition. If these lesions are not well-managed, further mineral 

loss will lead to a breakdown of tooth structure and appear as a cavity. [1] 

Managing carious lesions requires early detection, proper diagnosis, and appropriate 

treatment. [2] Treatment of tooth cavities is typically more invasive as it progresses. 

Such as filling, pulpal treatment, or even extraction, depending on the lesion's extent. 

Thus, early detection enables intercept before the problem could become more severe 

over time. 
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In the standard clinical setting, a dentist examinates teeth using visual-tactile inspec-

tion in conjunction with taking a bitewing radiograph. Bitewing radiographs are a com-

plementary method for detecting proximal and occlusal cavities in teeth that visual ex-

amination alone might be unable to see. [3]  

However, there is variability in individual dentists' diagnoses. Table 1 shows that the 

level of conformity among the examiners is between moderate to substantial. [4]–[6] 

Different staging could result in varied treatment decisions, as individual dentists have 

unique treatment strategies. This variability appears even among operative dentistry 

teachers, who lack standardized criteria for treatment decisions in operative dentistry. 

Some will start restoring teeth early, while others will monitor progression to some 

extent first. [7] 

Table 1. Kappa coefficient and level of agreement between the examiners 

Author Radiographic system Kappa Coefficient Level of agreement 

Valachovic et al. 1986 [4] Conventional 0.680 - 0.800 Substantial 
Langlais et al. 1987 [5] Conventional 0.565 - 0.599 Moderate 

Naitoh et al. 1998 [6] 
Conventional 

Digital 
0.424 
0.439 

Moderate 
Moderate 

Computer-aided assistance (CAA) systems for dental radiography images have re-

cently become an essential topic of study. These systems may aid dentists in making a 

more consistent and accurate diagnosis of dental caries in bitewing radiography images. 

Caries segmentation, i.e., classifying whether each point, specifically pixel, in radio-

graph contains caries or not, is considered a semantic segmentation task. Such segmen-

tation tasks can be automated using deep learning, a branch of machine learning that 

excels on high-dimensional data such as text and images. [8] 

A fully convolutional network (FCN) is one of the deep learning model architectures 

capable of doing a segmentation task and found success in segmenting medical images. 

Previous works demonstrated that custom-made FCN and U-Net, a specific type of 

FCN model, can provide consistent and accurate results. [9], [10] Currently, there are 

many types of FCN models available. Our contribution is in investigating different 

models and constructing an ensemble of several models to provide more reliable pre-

diction results. 

2 Literature Review 

2.1 Segmentation models: U-Net, FPN, and DeepLabV3+ 

Long et al. originally introduced fully convolutional networks (FCN) in 2014. [11] 

FCNs lack a flattening and dense (fully-connected) layer and rely solely on convolution 

operations. Most convolutional neural networks used in computer vision tasks follow a 

similar approach: they extract feature maps with a backbone, a feature extraction net-

work, and then pass them forward to specific networks capable of utilizing those 
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features. In this article, we refer to each network as a "head," with the encoder head 

serving as a synonym for a network backbone. 

The segmentation model can be divided into two principal heads—the encoder head 

and the decoder head. The encoder head's role is to extract features with a deep convo-

lutional network structure. Feature maps in deep layers contain robust features but lim-

ited spatial information, contrasting with features in shallow layers, which are weaker 

but rich in spatial information. The decoder head can be considered an "inverse" process 

of the encoder, upsampling low-dimensional feature maps into larger ones. However, 

upsampling from deep feature maps alone can suffer from a loss of segmentation detail, 

so a connector is added to the encoder head to transfer spatial data. [11], [12]  

The output of the decoder head is multiple feature maps with dimensions matching 

those of the input image. Finally, a convolution operation with a kernel size of one pixel 

is applied to generate the prediction result. Because the encoder head can be constructed 

from a competent image classification model, such as ResNet, [13] our primary interest 

is in the decoder head, where different approaches may yield different segmentation 

results. There are three FCN model variations within our scope of work: (1) U-Net 

implements cascade upsampling with fractionally stridden convolution and skip-con-

nector [12]; (2) Feature pyramid networks (FPN), which convolve and decode at mul-

tiple dimensions [14]; and (3) DeepLabV3+, which probes multiple feature maps with 

dilated convolution to deliver a broader field of view. [15] 

2.2 Ensemble of Semantic Segmentation Models 

Predictions from several models and techniques can improve efficiency and reduce pre-

diction variability. There are several ways to ensemble prediction results, including av-

erages, votes, and handcrafted machine learning algorithms. [16] The main disad-

vantage of using the ensemble model is expensive in terms of both time and computa-

tion cost and less interpretable as separate components. 

Thambawitaa et al. applied an ensemble model concept to segment colon polyps in 

the EndoCV2021 challenge consisting of two rounds. [17] TriUNet consists of three U-

Net models arranged in a triangular form which is the best performer in the first round. 

The model performs simultaneous learning of all three submodels, and loss values are 

passed back propagation to all three submodels. 

In the second race, Thambawitaa created a series of models. DivergentNets consists 

of 5 sub-models: UNet++, FPN, TriUNet, Deeplabv3, and Deeplabv3+, but there is a 

difference from the first one. Each submodel learns and predicts separately, and the 

final prediction result obtains by using averaged results. DivergentNets were also the 

best model in the second round. When comparing the accuracy metrics among its sub-

models, DivergentNets got better results. 

Thambawitta's methods demonstrate two approaches. One is increasing the model 

components. Another is using majority voting, similar to Condorcet's jury theorem that 

shows a large group is more likely to be correct than a decision attained by a single 

expert. However, training an end-to-end arbitrary spacious model is impossible as it 

will approach physical limitations. Although not mentioned, we suspected this is one 

of the reasons why Thambawitta trained submodel separately in DivergenNets. 
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2.3 Deep learning in Dental Caries Segmentation 

Deep learning is an emerging technology that has influenced the healthcare field, in-

cluding dentistry, particularly in the detection of dental caries. One of the earlier imple-

mentations was to classify an image as having dental caries or not. Lee studied the 

efficacy of deep convolutional neural networks, specifically Inception v3, trained on 

over 3,000 periapical radiographs. [18] The model can diagnose a cropped image of a 

tooth showing a promising result and may be helpful in clinical practice. 

 Such classification tasks can only categorize images into specific classes. Segmen-

tation tasks, however, can provide additional diagnostic information by outlining le-

sions, similar to clinical diagnostic criteria, and accounting for anatomical structures in 

a radiograph. For example, a lesion reaching the middle half of the dentin is classified 

as moderate and requires immediate treatment. [19] 

 Srivastava et al. developed a custom-made FCNN with over 100 layers to segment 

dental cavities in the bitewing radiograph with 3000 images as training materials. [10] 

This model achieved high recall (80.5) and moderate sensitivity (61.5), implying it 

missed only a few caries cases but still produced some ambiguous false-positive results. 

When compared to dentists, the model outperformed them by a large margin. 

Recently, Cantu et al. applied a particular type of FCN network, U-Net. [9] U-Net 

was first published by Ronneberger et al. and found to be successful and widely applied 

in medical imaging. [12] This model was trained on 3,686 bitewing radiographs. Unlike 

most dentists, who have low sensitivity to detecting initial lesions, the caries detection 

model is robust against both initial and advanced caries. In terms of metrics, it demon-

strated much higher overall accuracy and sensitivity than the dentists' average, although 

its specificity remains lower than that of dentists. 

Table 2. Metrics from previous works 

Author FCN architectures Evaluation metrics Score Dentists’ score (Mean, [Min-Max]) 

Srivastava et al. 
2017 [10] 

Handcrafted FCN 
(100+ layers) 

Recall 
Precision 
F1-score 

0.80 
0.61 
0.70 

0.41 [0.34-0.47] 
0.77 [0.63-0.89] 
0.53 [0.50-0.56] 

Cantu et al. 
2020 [9] 

U-Net with EfficientNet-B5 
as backbone 

Accuracy 
Sensitivity 
Specificity 

PPV 
NPV 

F1 score 
MCC 

0.80 
0.75 
0.83 
0.70 
0.86 
0.73 
0.57 

0.71 [0.61-0.78] 
0.36 [0.19-0.65] 
0.91 [0.69-0.98] 
0.75 [0.41-0.88] 
0.72 [0.68-0.82] 
0.41 [0.26-0.63] 
0.35 [0.14-0.51] 

 

Table 2 shows that deep learning models can produce satisfactory results, yielding 

high sensitivity, correctly interpreting results, and maintaining consistency with the ref-

erence set. However, even though many segmentation models are now available, no 

efficacy comparison has been made specifically for dental caries. This gap motivated 

us to identify the most suitable model architecture for caries segmentation and to 
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develop an improved model to assist in treatment planning and reduce variability 

among dentists. 

3 Data and Methodology 

3.1 Data  

We intentionally selected dental bitewing radiographs from various public sources to 

construct a small-scale pilot study test set. The criteria required that the images feature 

teeth in the adolescent age group, approximately 10-30 years old, with general charac-

teristics such as the presence of multiple cavities, normal morphology, and no signs of 

tooth wear. 

The dataset contains 326 images, divided into 270 radiographs with at least one car-

ies site and 56 radiographs without caries, showcasing various tooth features and caries 

lesions. The researcher annotated the ground truth dataset using the Labelme applica-

tion, resulting in a total of 657 identified cavities. 

3.2 Methodology 

This study is to train and evaluate the segmentation models. All models were con-

structed using PyTorch and trained with Google Colab Pro. Colab Pro consists of a 

Tesla T4 GPU with 16 GB of memory. Baseline models used for benchmarking in-

cluded U-Net, FPN, and DeepLabv3+. Subsequently, an ensemble model, named 

XsembleNet, was constructed by combining components of the three baseline models. 

The experiment was conducted in two stages. Initially, each model was trained, and 

quantitative metrics derived from a pixel-wise loss function were compared. Next, re-

sults were interpreted at the tooth level to assess the quality and characteristics of seg-

mentation for each model. This section describes the experimental setup, including data 

preparation, training techniques, and deep learning network modeling. 

1) Baseline Models Construction (U-Net, FPN, and DeepLabV3+) 

The baseline models were constructed using the implementations and pre-trained 

weights supplied in the Segmentation Models library. [20] These networks served as 

the foundation for our planned XsembleNet. Each model's encoder was ResNet34, [13] 

initialized with ImageNet weights. The number of encoder parameters is 21.2 million 

across all three models. The total parameters for the decoder part of U-Net, FPN, and 

DeepLabV3+ are 3.1 million, 1.8 million, and 1.1 million, respectively. In most cases, 

the decoder is considerably smaller than the encoder. 
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2) Construction of Ensemble Model With Three Decoders 

In the work of Thambawitta, DivergentNets is an ensemble of 5 different parallel pre-

trained baseline models. [17] The prediction result of DivergentNets is obtained by av-

eraging each model’s output. Each sub-model is frozen and does not have a connection 

between models in the training process. Even though all models’ encoders are the same, 

they can not be used interchangeably as the value of the encoder’s weights, and biases 

are not the same. Hence, these components are repetitive, inefficient, and lack interac-

tion between models, which could provide more information to enable more accurate 

predictions. 

Our contribution, XsembleNet, addresses repetitive components and leverages the 

relatively smaller size of the decoders compared to the encoder. Training multiple sub-

models simultaneously increases model size and can lead to memory constraints, par-

ticularly in GPU memory. By creating a shared encoder, XsembleNet reduces the model 

size, and the encoder is trained with different gradients from multiple decoders. 

However, some modifications to the encoder are necessary, as the desired feature 

map sizes vary among the decoders. For instance, the deep layer of the DeepLabV3+ 

decoder requires a constant feature map size for dilated convolution, which differs from 

the progressive downsampling used in U-Net and FPN decoders. To accommodate 

these differences, we designed a Y-shaped encoder, where the stem serves as a common 

encoder path for all three decoders, then splits into two branches: one for the 

DeepLabV3+ decoder and another for the U-Net and FPN decoders. This shared-com-

ponent approach reduces the model size by 41 percent, enabling a more efficient use of 

the encoder, allowing for a larger model, and reducing computational costs. 

3) Training of Segmentation Models 

The available data for training is small-scale, and its amount is about one-tenth of pre-

vious studies. [9], [10] In order to avoid overfitting and increase the diversity of data 

available for the training model, The data was augmented through geometric transfor-

mations (horizontal flip) and altering pixels’ intensity (brightness, contrast, and gauss-

ian-blur). The data is pre-separated into training and validation sets with a 7:3 propor-

tion to ensure all models are trained and validated on the same data. 

All models were trained with the same configuration, using the Adam optimizer for 

90 epochs to minimize a loss function. Training began with a learning rate of 5e-3, 

which was reduced by a factor of ten every 30 epochs. The loss function was a combi-

nation of binary cross-entropy loss (BCELoss) and Dice loss, defined in equations (1-

3). [21] BCELoss and Dice loss contribute to distribution and region training, respec-

tively. In this case, the data is skewed because positive pixels are vastly outnumbered 

by negative ones. To address this imbalance, BCELoss is multiplied by a factor of 5 (α) 

to bring it to the same level as Dice loss. 
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 𝐵𝐶𝐸𝐿𝑜𝑠𝑠(𝑌, 𝑌 ̂)  =  −(𝑦𝑙𝑜𝑔(�̂�)  +  (1 −  𝑦)𝑙𝑜𝑔(1 −  �̂�)) ;   𝑦 𝜖 𝑌, �̂� 𝜖 𝑌 ̂ (1) 

 𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠(𝑌, 𝑌 ̂)  = 1 −  
2×|Y∩Ŷ|

|Y|+|Ŷ|
 (2) 

 𝐶𝑜𝑚𝑏𝑜𝐿𝑜𝑠𝑠(𝑌, 𝑌 ̂, α)  =  α𝐵𝐶𝐸𝐿𝑜𝑠𝑠(𝑌, 𝑌 ̂)  +   𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠(𝑌, 𝑌 ̂) (3) 

4) Model Evaluation 

The model is evaluated in two ways. The first evaluation assesses segmentation quality 

at the pixel level using segmentation metrics: BCELoss, Dice loss, and Combo loss. 

The second evaluation rates the models' segmentation performance on 12 additional 

testing bitewing radiographs, analyzed at the tooth level. For this second evaluation, the 

prediction results are taken from the model state that achieved the lowest Dice loss, as 

this metric best correlates with the dentists' needs—segmenting the tooth decay area as 

accurately as possible. 

4 Results 

4.1 Quantitative Result 

Table 3 shows the losses for the three baseline models and the ensemble model, Xsem-

bleNet. It was found that U-Net achieved the lowest BCELoss and Combo loss among 

all models. While FPN had the lowest Dice loss among the baseline models, Xsemble-

Net yielded an even lower Dice loss than FPN. 

 

Table 3. Metrics from previous works 

Model 
Best Validation Loss (at epoch) 

Binary cross entropy loss Dice loss Combo loss 

U-Net 0.0269 (30) 0.5031 (77) 0.6342 (85) 
FPN 0.0289 (24) 0.4830 (51) 0.6651 (51) 

DeepLabV3+ 0.0344 (12) 0.6648 (71) 0.8209 (71) 
XsembleNet 0.0291 (17) 0.4691 (52) 0.6877 (52) 

 

Figure 1 shows the plot of validation Combo loss. All performance metrics increased 

over the epochs until convergence. However, among the models provided, only 

DeepLabV3+ did not stabilize during training, as indicated by fluctuating loss through-

out the entire run. 
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Fig. 1. Validation combo loss per epoch 

4.2 Qualitative Result 

Each model, at its lowest Dice score state, is then used for inference and analyzed at 

the tooth level, as illustrated in Figure 2. By merging ground truth with inference re-

sults, three distinct areas can be differentiated: true positive (TP), false positive (FP), 

and false negative (FN) findings. Lastly, true negatives (TN) are defined as teeth with-

out any ground truth or prediction areas. 

 

Fig. 2. Tooth-level interpretation 

The testing set contains 12 additional bitewing radiographs with 24 cavities across 

77 teeth. We constructed confusion matrices and derived four metrics to evaluate model 

efficacy: accuracy, F1-score, precision, and sensitivity, as shown in Table 4. 

Table 4. Classification metrics and interference time from tooth-level interpretation 

Model 
Testing set classification metrics 

Total CPU inference time 
Accuracy F1-Score Precision Sensitivity 

U-Net 0.9307 0.8571 0.8400 0.8750 08.38s 
FPN 0.9680 0.9200 0.8846 0.9580 07.05s  

DeepLabV3+ 0.8713 0.6977 0.7895 0.6250 07.91s 

XsembleNet 0.9680 0.9200 0.8846 0.9583 15.52s 
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Among the four models, XsembleNet and FPN achieved the highest accuracy, de-

tecting cavities in 23 out of 24 locations, with three false positives each. The U-Net 

model predicted cavities in 21 locations with four false positives, while DeepLabV3+ 

detected only 15 cavities and had four false positives. 

XsembleNet and FPN scored the highest across all metrics because both models were 

more accurate in predicting cavities and produced fewer false positives. The U-Net 

model followed these two, as it missed detecting cavities in some areas. In contrast, 

DeepLabV3+ had the lowest metric scores due to detecting the fewest cavities while 

still producing false positives. 

 

Fig. 3. Pre-thresholded prediction results 

We further examined the segmentation characteristics of each model based on pre-

threshold prediction results, as shown in Figure 3. Each model exhibited unique perfor-

mance characteristics. Generally, U-Net produces well-defined, slightly rounded bor-

ders but does not adapt to concave areas as well as FPN. DeepLabV3+ differs from 

these two, as it generates numerous ambiguous patches that appear blurry and are typi-

cally below the threshold value (0.5). All models except U-Net exhibit some degree of 

blurriness. We suspect that multi-level prediction and dilated convolution are the pri-

mary causes. 

Our implementation, XsembleNet, inherits characteristics from its components. Its 

predictions are slightly blurred but much less so than DeepLabV3+ results. We found 

that XsembleNet’s results closely resemble a blend of the baseline models, as illustrated 

in Figure 4, where each color represents a corresponding model. However, Xsemble-

Net’s results tend to align more closely with the FPN model, as it is the most promising 

component within the ensemble. 

5 Discussion 

With the same encoder, different decoders can produce varying results. In this ex-

periment, FPN and XsembleNet were found to be suitable for caries segmentation tasks, 

as they achieved satisfactory Dice loss and performed well in tooth-level prediction. 

Our approach provided feature maps to different decoder architectures from the same 

backbone. XsembleNet differs from Thambawitta’s TriUNet, which combines three U-

Nets. [17] The ensemble model consists of three different base models trained end-to-

end, achieving both quantitative and qualitative success. Notably, XsembleNet 

achieved a better Dice score than FPN, the best performer among the three base models.  
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The computational cost of adding decoders is not as high as adding encoders, making 

further extensions with additional decoder components feasible. However, while the 

ensemble model can enhance segmentation quality, it is complex to interpret as a whole; 

thus, each sub-model requires separate, detailed interpretation. 

In our case, XsembleNet's pixel-wise metrics (binary cross-entropy loss and Dice 

loss) and tooth-level metrics are comparable to those of FPN. Ensemble techniques may 

sometimes increase efficacy by a small margin, making the modeling process a balance 

between model complexity and performance gain.  

Compared to previous works, our models achieved satisfactory tooth-level predic-

tion accuracy. However, it is important to note that the training and testing data are 

relatively small-scale compared to previous studies. Interpreter bias may have influ-

enced performance, as only one person annotated the dataset in this pilot study. Increas-

ing the dataset size, constructing a gold standard, and performing K-fold cross-valida-

tion would help address this limitation. 

 

Fig. 4. Comparison result between baseline models and XsembleNet 

6 Conclusion 

The experiments demonstrate that fully convolutional neural networks can accu-

rately detect dental proximal caries in radiographs. The implemented deep learning 

models show potential as tools for clinical routine use and for supporting adherence to 

reference diagnostic criteria. 
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Appendix Fig. 1. XsembleNet Arcitecture 

 


